Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The Root-Associated Microbial Community of the World's Highest Growing Vascular Plants.

Identifieur interne : 001054 ( Main/Corpus ); précédent : 001053; suivant : 001055

The Root-Associated Microbial Community of the World's Highest Growing Vascular Plants.

Auteurs : Roey Angel ; Ralf Conrad ; Miroslav Dvorsky ; Martin Kopecky ; Milan Kotilínek ; Inga Hiiesalu ; Fritz Schweingruber ; Ji Doležal

Source :

RBID : pubmed:27245598

English descriptors

Abstract

Upward migration of plants to barren subnival areas is occurring worldwide due to raising ambient temperatures and glacial recession. In summer 2012, the presence of six vascular plants, growing in a single patch, was recorded at an unprecedented elevation of 6150 m.a.s.l. close to the summit of Mount Shukule II in the Western Himalayas (Ladakh, India). Whilst showing multiple signs of stress, all plants have managed to establish stable growth and persist for several years. To learn about the role of microbes in the process of plant upward migration, we analysed the root-associated microbial community of the plants (three individuals from each) using microscopy and tagged amplicon sequencing. No mycorrhizae were found on the roots, implying they are of little importance to the establishment and early growth of the plants. However, all roots were associated with a complex bacterial community, with richness and diversity estimates similar or even higher than the surrounding bare soil. Both soil and root-associated communities were dominated by members of the orders Sphingomonadales and Sphingobacteriales, which are typical for hot desert soils, but were different from communities of temperate subnival soils and typical rhizosphere communities. Despite taxonomic similarity on the order level, the plants harboured a unique set of highly dominant operational taxonomic units which were not found in the bare soil. These bacteria have been likely transported with the dispersing seeds and became part of the root-associated community following germination. The results indicate that developing soils act not only as a source of inoculation to plant roots but also possibly as a sink for plant-associated bacteria.

DOI: 10.1007/s00248-016-0779-8
PubMed: 27245598
PubMed Central: PMC4937074

Links to Exploration step

pubmed:27245598

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The Root-Associated Microbial Community of the World's Highest Growing Vascular Plants.</title>
<author>
<name sortKey="Angel, Roey" sort="Angel, Roey" uniqKey="Angel R" first="Roey" last="Angel">Roey Angel</name>
<affiliation>
<nlm:affiliation>Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg, Germany. angel@microbial-ecology.net.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, University of Vienna, Althanstrasse 14, Vienna, Austria. angel@microbial-ecology.net.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Conrad, Ralf" sort="Conrad, Ralf" uniqKey="Conrad R" first="Ralf" last="Conrad">Ralf Conrad</name>
<affiliation>
<nlm:affiliation>Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dvorsky, Miroslav" sort="Dvorsky, Miroslav" uniqKey="Dvorsky M" first="Miroslav" last="Dvorsky">Miroslav Dvorsky</name>
<affiliation>
<nlm:affiliation>Institute of Botany, The Czech Academy of Sciences, Zámek 1, 25243, Průhonice, Czech Republic.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kopecky, Martin" sort="Kopecky, Martin" uniqKey="Kopecky M" first="Martin" last="Kopecky">Martin Kopecky</name>
<affiliation>
<nlm:affiliation>Institute of Botany, The Czech Academy of Sciences, Zámek 1, 25243, Průhonice, Czech Republic.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kotilinek, Milan" sort="Kotilinek, Milan" uniqKey="Kotilinek M" first="Milan" last="Kotilínek">Milan Kotilínek</name>
<affiliation>
<nlm:affiliation>Department of Botany, Faculty of Science, University of South Bohemia, Na Zlate stoce 1, 37005, Ceske Budejovice, Czech Republic.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hiiesalu, Inga" sort="Hiiesalu, Inga" uniqKey="Hiiesalu I" first="Inga" last="Hiiesalu">Inga Hiiesalu</name>
<affiliation>
<nlm:affiliation>Institute of Botany, The Czech Academy of Sciences, Zámek 1, 25243, Průhonice, Czech Republic.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schweingruber, Fritz" sort="Schweingruber, Fritz" uniqKey="Schweingruber F" first="Fritz" last="Schweingruber">Fritz Schweingruber</name>
<affiliation>
<nlm:affiliation>Swiss Federal Research Institute WSL, Zuercherstrasse 111, 8903, Birmensdorf, Switzerland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dolezal, Ji" sort="Dolezal, Ji" uniqKey="Dolezal J" first="Ji" last="Doležal">Ji Doležal</name>
<affiliation>
<nlm:affiliation>Institute of Botany, The Czech Academy of Sciences, Zámek 1, 25243, Průhonice, Czech Republic.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Botany, Faculty of Science, University of South Bohemia, Na Zlate stoce 1, 37005, Ceske Budejovice, Czech Republic.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27245598</idno>
<idno type="pmid">27245598</idno>
<idno type="doi">10.1007/s00248-016-0779-8</idno>
<idno type="pmc">PMC4937074</idno>
<idno type="wicri:Area/Main/Corpus">001054</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001054</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The Root-Associated Microbial Community of the World's Highest Growing Vascular Plants.</title>
<author>
<name sortKey="Angel, Roey" sort="Angel, Roey" uniqKey="Angel R" first="Roey" last="Angel">Roey Angel</name>
<affiliation>
<nlm:affiliation>Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg, Germany. angel@microbial-ecology.net.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, University of Vienna, Althanstrasse 14, Vienna, Austria. angel@microbial-ecology.net.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Conrad, Ralf" sort="Conrad, Ralf" uniqKey="Conrad R" first="Ralf" last="Conrad">Ralf Conrad</name>
<affiliation>
<nlm:affiliation>Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dvorsky, Miroslav" sort="Dvorsky, Miroslav" uniqKey="Dvorsky M" first="Miroslav" last="Dvorsky">Miroslav Dvorsky</name>
<affiliation>
<nlm:affiliation>Institute of Botany, The Czech Academy of Sciences, Zámek 1, 25243, Průhonice, Czech Republic.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kopecky, Martin" sort="Kopecky, Martin" uniqKey="Kopecky M" first="Martin" last="Kopecky">Martin Kopecky</name>
<affiliation>
<nlm:affiliation>Institute of Botany, The Czech Academy of Sciences, Zámek 1, 25243, Průhonice, Czech Republic.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kotilinek, Milan" sort="Kotilinek, Milan" uniqKey="Kotilinek M" first="Milan" last="Kotilínek">Milan Kotilínek</name>
<affiliation>
<nlm:affiliation>Department of Botany, Faculty of Science, University of South Bohemia, Na Zlate stoce 1, 37005, Ceske Budejovice, Czech Republic.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hiiesalu, Inga" sort="Hiiesalu, Inga" uniqKey="Hiiesalu I" first="Inga" last="Hiiesalu">Inga Hiiesalu</name>
<affiliation>
<nlm:affiliation>Institute of Botany, The Czech Academy of Sciences, Zámek 1, 25243, Průhonice, Czech Republic.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schweingruber, Fritz" sort="Schweingruber, Fritz" uniqKey="Schweingruber F" first="Fritz" last="Schweingruber">Fritz Schweingruber</name>
<affiliation>
<nlm:affiliation>Swiss Federal Research Institute WSL, Zuercherstrasse 111, 8903, Birmensdorf, Switzerland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dolezal, Ji" sort="Dolezal, Ji" uniqKey="Dolezal J" first="Ji" last="Doležal">Ji Doležal</name>
<affiliation>
<nlm:affiliation>Institute of Botany, The Czech Academy of Sciences, Zámek 1, 25243, Průhonice, Czech Republic.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Botany, Faculty of Science, University of South Bohemia, Na Zlate stoce 1, 37005, Ceske Budejovice, Czech Republic.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Microbial ecology</title>
<idno type="eISSN">1432-184X</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bacteria (classification)</term>
<term>Bacteria (isolation & purification)</term>
<term>Biomass (MeSH)</term>
<term>Brassicaceae (classification)</term>
<term>Brassicaceae (microbiology)</term>
<term>DNA, Bacterial (genetics)</term>
<term>DNA, Fungal (genetics)</term>
<term>India (MeSH)</term>
<term>Mycorrhizae (classification)</term>
<term>Mycorrhizae (isolation & purification)</term>
<term>Plant Roots (microbiology)</term>
<term>Poaceae (classification)</term>
<term>Poaceae (microbiology)</term>
<term>RNA, Ribosomal, 16S (genetics)</term>
<term>Rhizosphere (MeSH)</term>
<term>Saussurea (classification)</term>
<term>Saussurea (microbiology)</term>
<term>Sequence Analysis, DNA (MeSH)</term>
<term>Soil Microbiology (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Bacterial</term>
<term>DNA, Fungal</term>
<term>RNA, Ribosomal, 16S</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Bacteria</term>
<term>Brassicaceae</term>
<term>Mycorrhizae</term>
<term>Poaceae</term>
<term>Saussurea</term>
</keywords>
<keywords scheme="MESH" qualifier="isolation & purification" xml:lang="en">
<term>Bacteria</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Brassicaceae</term>
<term>Plant Roots</term>
<term>Poaceae</term>
<term>Saussurea</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biomass</term>
<term>India</term>
<term>Rhizosphere</term>
<term>Sequence Analysis, DNA</term>
<term>Soil Microbiology</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Upward migration of plants to barren subnival areas is occurring worldwide due to raising ambient temperatures and glacial recession. In summer 2012, the presence of six vascular plants, growing in a single patch, was recorded at an unprecedented elevation of 6150 m.a.s.l. close to the summit of Mount Shukule II in the Western Himalayas (Ladakh, India). Whilst showing multiple signs of stress, all plants have managed to establish stable growth and persist for several years. To learn about the role of microbes in the process of plant upward migration, we analysed the root-associated microbial community of the plants (three individuals from each) using microscopy and tagged amplicon sequencing. No mycorrhizae were found on the roots, implying they are of little importance to the establishment and early growth of the plants. However, all roots were associated with a complex bacterial community, with richness and diversity estimates similar or even higher than the surrounding bare soil. Both soil and root-associated communities were dominated by members of the orders Sphingomonadales and Sphingobacteriales, which are typical for hot desert soils, but were different from communities of temperate subnival soils and typical rhizosphere communities. Despite taxonomic similarity on the order level, the plants harboured a unique set of highly dominant operational taxonomic units which were not found in the bare soil. These bacteria have been likely transported with the dispersing seeds and became part of the root-associated community following germination. The results indicate that developing soils act not only as a source of inoculation to plant roots but also possibly as a sink for plant-associated bacteria.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27245598</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>08</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-184X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>72</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2016</Year>
<Month>08</Month>
</PubDate>
</JournalIssue>
<Title>Microbial ecology</Title>
<ISOAbbreviation>Microb Ecol</ISOAbbreviation>
</Journal>
<ArticleTitle>The Root-Associated Microbial Community of the World's Highest Growing Vascular Plants.</ArticleTitle>
<Pagination>
<MedlinePgn>394-406</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00248-016-0779-8</ELocationID>
<Abstract>
<AbstractText>Upward migration of plants to barren subnival areas is occurring worldwide due to raising ambient temperatures and glacial recession. In summer 2012, the presence of six vascular plants, growing in a single patch, was recorded at an unprecedented elevation of 6150 m.a.s.l. close to the summit of Mount Shukule II in the Western Himalayas (Ladakh, India). Whilst showing multiple signs of stress, all plants have managed to establish stable growth and persist for several years. To learn about the role of microbes in the process of plant upward migration, we analysed the root-associated microbial community of the plants (three individuals from each) using microscopy and tagged amplicon sequencing. No mycorrhizae were found on the roots, implying they are of little importance to the establishment and early growth of the plants. However, all roots were associated with a complex bacterial community, with richness and diversity estimates similar or even higher than the surrounding bare soil. Both soil and root-associated communities were dominated by members of the orders Sphingomonadales and Sphingobacteriales, which are typical for hot desert soils, but were different from communities of temperate subnival soils and typical rhizosphere communities. Despite taxonomic similarity on the order level, the plants harboured a unique set of highly dominant operational taxonomic units which were not found in the bare soil. These bacteria have been likely transported with the dispersing seeds and became part of the root-associated community following germination. The results indicate that developing soils act not only as a source of inoculation to plant roots but also possibly as a sink for plant-associated bacteria.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Angel</LastName>
<ForeName>Roey</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg, Germany. angel@microbial-ecology.net.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, University of Vienna, Althanstrasse 14, Vienna, Austria. angel@microbial-ecology.net.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Conrad</LastName>
<ForeName>Ralf</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dvorsky</LastName>
<ForeName>Miroslav</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Institute of Botany, The Czech Academy of Sciences, Zámek 1, 25243, Průhonice, Czech Republic.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kopecky</LastName>
<ForeName>Martin</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Institute of Botany, The Czech Academy of Sciences, Zámek 1, 25243, Průhonice, Czech Republic.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kotilínek</LastName>
<ForeName>Milan</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Botany, Faculty of Science, University of South Bohemia, Na Zlate stoce 1, 37005, Ceske Budejovice, Czech Republic.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hiiesalu</LastName>
<ForeName>Inga</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Institute of Botany, The Czech Academy of Sciences, Zámek 1, 25243, Průhonice, Czech Republic.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schweingruber</LastName>
<ForeName>Fritz</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Swiss Federal Research Institute WSL, Zuercherstrasse 111, 8903, Birmensdorf, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Doležal</LastName>
<ForeName>Jiří</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Institute of Botany, The Czech Academy of Sciences, Zámek 1, 25243, Průhonice, Czech Republic.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Botany, Faculty of Science, University of South Bohemia, Na Zlate stoce 1, 37005, Ceske Budejovice, Czech Republic.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>05</Month>
<Day>31</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Microb Ecol</MedlineTA>
<NlmUniqueID>7500663</NlmUniqueID>
<ISSNLinking>0095-3628</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004269">DNA, Bacterial</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004271">DNA, Fungal</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012336">RNA, Ribosomal, 16S</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001419" MajorTopicYN="N">Bacteria</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="Y">classification</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="N">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019607" MajorTopicYN="N">Brassicaceae</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004269" MajorTopicYN="N">DNA, Bacterial</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004271" MajorTopicYN="N">DNA, Fungal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007194" MajorTopicYN="N">India</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="Y">classification</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006109" MajorTopicYN="N">Poaceae</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012336" MajorTopicYN="N">RNA, Ribosomal, 16S</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058441" MajorTopicYN="N">Rhizosphere</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030441" MajorTopicYN="N">Saussurea</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="N">Soil Microbiology</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Plant-associated bacteria</Keyword>
<Keyword MajorTopicYN="Y">Subnival soil</Keyword>
<Keyword MajorTopicYN="Y">Upward migration</Keyword>
<Keyword MajorTopicYN="Y">Vascular plants</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>01</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>05</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>6</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>6</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>8</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27245598</ArticleId>
<ArticleId IdType="doi">10.1007/s00248-016-0779-8</ArticleId>
<ArticleId IdType="pii">10.1007/s00248-016-0779-8</ArticleId>
<ArticleId IdType="pmc">PMC4937074</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Bioinformatics. 2012 Jul 15;28(14):1823-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22556368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2011 May;77(10):3219-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21421784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2015 Apr 16;6:304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25932023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2012 Jul;78(13):4691-701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22544239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2006 Jun;72(6):3975-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16751505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2010 Jul;12(7):1889-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20236171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2013 Nov;11(11):789-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24056930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2010 Nov;60(4):762-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20549199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Syst Bacteriol. 1997 Apr;47(2):577-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9103654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2008;59(11):2905-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18603617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol. 2009 Dec;47(6):673-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20127458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2012 Apr;63(3):552-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22159526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2015 Feb;69(2):383-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25370885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2000 Oct;66(10):4372-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11010885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 May 30;4:165</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23755059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pac Symp Biocomput. 2011;:121-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21121040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Aug 15;27(16):2194-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21700674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2015 Mar;39(2):203-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25725013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2004;42:271-309</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15283668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Sep 26;8(9):e76440</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24086740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2008 Dec 22;275(1653):2793-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18755677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Aug 19;333(6045):1024-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21852500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2011 Jun;5(6):1025-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21124490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Apr 16;110(16):6548-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23576752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2010 Aug;4(8):989-1001</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20357834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2011 Feb;61(2):438-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20953598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2013 Oct;86(1):101-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23621290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Apr 20;336(6079):310-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22517852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2013 Sep;79(17):5112-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23793624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(2):e30126</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22319561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2012 Apr;6(4):847-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22071343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2005 Mar;7(3):337-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15683394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2013 Dec 03;4:359</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24348469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antonie Van Leeuwenhoek. 2013 Jun;103(6):1329-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23559041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2013 Oct;15(10):2799-815</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23648088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2015 Mar;24(5):1091-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25533315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007;35(21):7188-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17947321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Extremophiles. 2012 May;16(3):553-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22527047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011 Feb 16;6(2):e17000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21359220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(5):e36741</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22615804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2008 Dec;2(12):1221-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18754043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2009 Nov;3(11):1258-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19587774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Dec;75(23):7537-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19801464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol Rep. 2009 Oct;1(5):355-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23765887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2009 Nov;12(11):1238-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19674041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2007 Aug;1(4):283-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18043639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Feb 24;112(8):E911-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25605935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2005 Nov;71(11):6784-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16269710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antonie Van Leeuwenhoek. 2002 Aug;81(1-4):509-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12448746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2007 Jan;53(1):110-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17186150</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001054 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001054 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:27245598
   |texte=   The Root-Associated Microbial Community of the World's Highest Growing Vascular Plants.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:27245598" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020