Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mycorrhizal association as a primary control of the CO₂ fertilization effect.

Identifieur interne : 001012 ( Main/Corpus ); précédent : 001011; suivant : 001013

Mycorrhizal association as a primary control of the CO₂ fertilization effect.

Auteurs : César Terrer ; Sara Vicca ; Bruce A. Hungate ; Richard P. Phillips ; I Colin Prentice

Source :

RBID : pubmed:27365447

English descriptors

Abstract

Plants buffer increasing atmospheric carbon dioxide (CO2) concentrations through enhanced growth, but the question whether nitrogen availability constrains the magnitude of this ecosystem service remains unresolved. Synthesizing experiments from around the world, we show that CO2 fertilization is best explained by a simple interaction between nitrogen availability and mycorrhizal association. Plant species that associate with ectomycorrhizal fungi show a strong biomass increase (30 ± 3%, P < 0.001) in response to elevated CO2 regardless of nitrogen availability, whereas low nitrogen availability limits CO2 fertilization (0 ± 5%, P = 0.946) in plants that associate with arbuscular mycorrhizal fungi. The incorporation of mycorrhizae in global carbon cycle models is feasible, and crucial if we are to accurately project ecosystem responses and feedbacks to climate change.

DOI: 10.1126/science.aaf4610
PubMed: 27365447

Links to Exploration step

pubmed:27365447

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mycorrhizal association as a primary control of the CO₂ fertilization effect.</title>
<author>
<name sortKey="Terrer, Cesar" sort="Terrer, Cesar" uniqKey="Terrer C" first="César" last="Terrer">César Terrer</name>
<affiliation>
<nlm:affiliation>AXA Chair Programme in Biosphere and Climate Impacts, Department of Life Sciences, Silwood Park Campus, Ascot, Imperial College London, UK. c.terrer@imperial.ac.uk.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Vicca, Sara" sort="Vicca, Sara" uniqKey="Vicca S" first="Sara" last="Vicca">Sara Vicca</name>
<affiliation>
<nlm:affiliation>Centre of Excellence PLECO (Plant and Vegetation Ecology), Department of Biology, University of Antwerp, 2610 Wilrijk, Belgium.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hungate, Bruce A" sort="Hungate, Bruce A" uniqKey="Hungate B" first="Bruce A" last="Hungate">Bruce A. Hungate</name>
<affiliation>
<nlm:affiliation>Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ 86011, USA. Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Phillips, Richard P" sort="Phillips, Richard P" uniqKey="Phillips R" first="Richard P" last="Phillips">Richard P. Phillips</name>
<affiliation>
<nlm:affiliation>Department of Biology, Indiana University, Bloomington, IN 47405, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Prentice, I Colin" sort="Prentice, I Colin" uniqKey="Prentice I" first="I Colin" last="Prentice">I Colin Prentice</name>
<affiliation>
<nlm:affiliation>AXA Chair Programme in Biosphere and Climate Impacts, Department of Life Sciences, Silwood Park Campus, Ascot, Imperial College London, UK. Department of Biological Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27365447</idno>
<idno type="pmid">27365447</idno>
<idno type="doi">10.1126/science.aaf4610</idno>
<idno type="wicri:Area/Main/Corpus">001012</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001012</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Mycorrhizal association as a primary control of the CO₂ fertilization effect.</title>
<author>
<name sortKey="Terrer, Cesar" sort="Terrer, Cesar" uniqKey="Terrer C" first="César" last="Terrer">César Terrer</name>
<affiliation>
<nlm:affiliation>AXA Chair Programme in Biosphere and Climate Impacts, Department of Life Sciences, Silwood Park Campus, Ascot, Imperial College London, UK. c.terrer@imperial.ac.uk.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Vicca, Sara" sort="Vicca, Sara" uniqKey="Vicca S" first="Sara" last="Vicca">Sara Vicca</name>
<affiliation>
<nlm:affiliation>Centre of Excellence PLECO (Plant and Vegetation Ecology), Department of Biology, University of Antwerp, 2610 Wilrijk, Belgium.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hungate, Bruce A" sort="Hungate, Bruce A" uniqKey="Hungate B" first="Bruce A" last="Hungate">Bruce A. Hungate</name>
<affiliation>
<nlm:affiliation>Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ 86011, USA. Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Phillips, Richard P" sort="Phillips, Richard P" uniqKey="Phillips R" first="Richard P" last="Phillips">Richard P. Phillips</name>
<affiliation>
<nlm:affiliation>Department of Biology, Indiana University, Bloomington, IN 47405, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Prentice, I Colin" sort="Prentice, I Colin" uniqKey="Prentice I" first="I Colin" last="Prentice">I Colin Prentice</name>
<affiliation>
<nlm:affiliation>AXA Chair Programme in Biosphere and Climate Impacts, Department of Life Sciences, Silwood Park Campus, Ascot, Imperial College London, UK. Department of Biological Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Science (New York, N.Y.)</title>
<idno type="eISSN">1095-9203</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biomass (MeSH)</term>
<term>Carbon Cycle (MeSH)</term>
<term>Carbon Dioxide (metabolism)</term>
<term>Climate Change (MeSH)</term>
<term>Fertilization (MeSH)</term>
<term>Mycorrhizae (physiology)</term>
<term>Nitrogen (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbon Dioxide</term>
<term>Nitrogen</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biomass</term>
<term>Carbon Cycle</term>
<term>Climate Change</term>
<term>Fertilization</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Plants buffer increasing atmospheric carbon dioxide (CO2) concentrations through enhanced growth, but the question whether nitrogen availability constrains the magnitude of this ecosystem service remains unresolved. Synthesizing experiments from around the world, we show that CO2 fertilization is best explained by a simple interaction between nitrogen availability and mycorrhizal association. Plant species that associate with ectomycorrhizal fungi show a strong biomass increase (30 ± 3%, P < 0.001) in response to elevated CO2 regardless of nitrogen availability, whereas low nitrogen availability limits CO2 fertilization (0 ± 5%, P = 0.946) in plants that associate with arbuscular mycorrhizal fungi. The incorporation of mycorrhizae in global carbon cycle models is feasible, and crucial if we are to accurately project ecosystem responses and feedbacks to climate change. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27365447</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>08</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>07</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1095-9203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>353</Volume>
<Issue>6294</Issue>
<PubDate>
<Year>2016</Year>
<Month>Jul</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Science (New York, N.Y.)</Title>
<ISOAbbreviation>Science</ISOAbbreviation>
</Journal>
<ArticleTitle>Mycorrhizal association as a primary control of the CO₂ fertilization effect.</ArticleTitle>
<Pagination>
<MedlinePgn>72-4</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1126/science.aaf4610</ELocationID>
<Abstract>
<AbstractText>Plants buffer increasing atmospheric carbon dioxide (CO2) concentrations through enhanced growth, but the question whether nitrogen availability constrains the magnitude of this ecosystem service remains unresolved. Synthesizing experiments from around the world, we show that CO2 fertilization is best explained by a simple interaction between nitrogen availability and mycorrhizal association. Plant species that associate with ectomycorrhizal fungi show a strong biomass increase (30 ± 3%, P < 0.001) in response to elevated CO2 regardless of nitrogen availability, whereas low nitrogen availability limits CO2 fertilization (0 ± 5%, P = 0.946) in plants that associate with arbuscular mycorrhizal fungi. The incorporation of mycorrhizae in global carbon cycle models is feasible, and crucial if we are to accurately project ecosystem responses and feedbacks to climate change. </AbstractText>
<CopyrightInformation>Copyright © 2016, American Association for the Advancement of Science.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Terrer</LastName>
<ForeName>César</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>AXA Chair Programme in Biosphere and Climate Impacts, Department of Life Sciences, Silwood Park Campus, Ascot, Imperial College London, UK. c.terrer@imperial.ac.uk.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vicca</LastName>
<ForeName>Sara</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Centre of Excellence PLECO (Plant and Vegetation Ecology), Department of Biology, University of Antwerp, 2610 Wilrijk, Belgium.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hungate</LastName>
<ForeName>Bruce A</ForeName>
<Initials>BA</Initials>
<AffiliationInfo>
<Affiliation>Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ 86011, USA. Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Phillips</LastName>
<ForeName>Richard P</ForeName>
<Initials>RP</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Indiana University, Bloomington, IN 47405, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Prentice</LastName>
<ForeName>I Colin</ForeName>
<Initials>IC</Initials>
<AffiliationInfo>
<Affiliation>AXA Chair Programme in Biosphere and Climate Impacts, Department of Life Sciences, Silwood Park Campus, Ascot, Imperial College London, UK. Department of Biological Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Science</MedlineTA>
<NlmUniqueID>0404511</NlmUniqueID>
<ISSNLinking>0036-8075</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>142M471B3J</RegistryNumber>
<NameOfSubstance UI="D002245">Carbon Dioxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="CommentIn">
<RefSource>Science. 2017 Jan 27;355(6323):358</RefSource>
<PMID Version="1">28126781</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="Y">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057486" MajorTopicYN="N">Carbon Cycle</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002245" MajorTopicYN="N">Carbon Dioxide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057231" MajorTopicYN="Y">Climate Change</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005306" MajorTopicYN="Y">Fertilization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>02</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>06</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>7</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>7</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>8</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27365447</ArticleId>
<ArticleId IdType="pii">353/6294/72</ArticleId>
<ArticleId IdType="doi">10.1126/science.aaf4610</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001012 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001012 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:27365447
   |texte=   Mycorrhizal association as a primary control of the CO₂ fertilization effect.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:27365447" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020