Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Experimental Climate Change Modifies Degradative Succession in Boreal Peatland Fungal Communities.

Identifieur interne : 000F15 ( Main/Corpus ); précédent : 000F14; suivant : 000F16

Experimental Climate Change Modifies Degradative Succession in Boreal Peatland Fungal Communities.

Auteurs : Asma Asemaninejad ; R Greg Thorn ; Zoë Lindo

Source :

RBID : pubmed:27744477

English descriptors

Abstract

Peatlands play an important role in global climate change through sequestration of atmospheric CO2. Climate-driven changes in the structure of fungal communities in boreal peatlands that favor saprotrophic fungi can substantially impact carbon dynamics and nutrient cycling in these crucial ecosystems. In a mesocosm study using a full factorial design, 100 intact peat monoliths, complete with living Sphagnum and above-ground vascular vegetation, were subjected to three climate change variables (increased temperature, reduced water table, and elevated CO2 concentrations). Peat litterbags were placed in mesocosms, and fungal communities in litterbags were monitored over 12 months to assess the impacts of climate change variables on peat-inhabiting fungi. Changes in fungal richness, diversity, and community composition were assessed using Illumina MiSeq sequencing of ribosomal DNA (rDNA). While general fungal richness reduced under warming conditions, Ascomycota exhibited higher diversity under increased temperature treatments over the course of the experiment. Both increased temperature and lowered water table position drove shifts in fungal community composition with a strong positive effect on endophytic and mycorrhizal fungi (including one operational taxonomic unit (OTU) tentatively identified as Barrenia panicia) and different groups of saprotrophs identified as Mortierella, Galerina, and Mycena. These shifts were observed during a predicted degradative succession in the decomposer community as different carbon substrates became available. Since fungi play a central role in peatland communities, increased abundances of saprotrophic fungi under warming conditions, at the expense of reduced fungal richness overall, may increase decomposition rates under future climate scenarios and could potentially aggravate the impacts of climate change.

DOI: 10.1007/s00248-016-0875-9
PubMed: 27744477

Links to Exploration step

pubmed:27744477

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Experimental Climate Change Modifies Degradative Succession in Boreal Peatland Fungal Communities.</title>
<author>
<name sortKey="Asemaninejad, Asma" sort="Asemaninejad, Asma" uniqKey="Asemaninejad A" first="Asma" last="Asemaninejad">Asma Asemaninejad</name>
<affiliation>
<nlm:affiliation>Department of Biology, The University of Western Ontario, London, Ontario, N6A 5B7, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Thorn, R Greg" sort="Thorn, R Greg" uniqKey="Thorn R" first="R Greg" last="Thorn">R Greg Thorn</name>
<affiliation>
<nlm:affiliation>Department of Biology, The University of Western Ontario, London, Ontario, N6A 5B7, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lindo, Zoe" sort="Lindo, Zoe" uniqKey="Lindo Z" first="Zoë" last="Lindo">Zoë Lindo</name>
<affiliation>
<nlm:affiliation>Department of Biology, The University of Western Ontario, London, Ontario, N6A 5B7, Canada. zlindo@uwo.ca.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:27744477</idno>
<idno type="pmid">27744477</idno>
<idno type="doi">10.1007/s00248-016-0875-9</idno>
<idno type="wicri:Area/Main/Corpus">000F15</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000F15</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Experimental Climate Change Modifies Degradative Succession in Boreal Peatland Fungal Communities.</title>
<author>
<name sortKey="Asemaninejad, Asma" sort="Asemaninejad, Asma" uniqKey="Asemaninejad A" first="Asma" last="Asemaninejad">Asma Asemaninejad</name>
<affiliation>
<nlm:affiliation>Department of Biology, The University of Western Ontario, London, Ontario, N6A 5B7, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Thorn, R Greg" sort="Thorn, R Greg" uniqKey="Thorn R" first="R Greg" last="Thorn">R Greg Thorn</name>
<affiliation>
<nlm:affiliation>Department of Biology, The University of Western Ontario, London, Ontario, N6A 5B7, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lindo, Zoe" sort="Lindo, Zoe" uniqKey="Lindo Z" first="Zoë" last="Lindo">Zoë Lindo</name>
<affiliation>
<nlm:affiliation>Department of Biology, The University of Western Ontario, London, Ontario, N6A 5B7, Canada. zlindo@uwo.ca.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Microbial ecology</title>
<idno type="eISSN">1432-184X</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Ascomycota (classification)</term>
<term>Ascomycota (genetics)</term>
<term>Ascomycota (metabolism)</term>
<term>Biodiversity (MeSH)</term>
<term>Climate (MeSH)</term>
<term>Climate Change (MeSH)</term>
<term>DNA, Fungal (genetics)</term>
<term>Microbiota (genetics)</term>
<term>Mortierella (classification)</term>
<term>Mortierella (genetics)</term>
<term>Mortierella (growth & development)</term>
<term>Mycorrhizae (classification)</term>
<term>Mycorrhizae (growth & development)</term>
<term>Soil (chemistry)</term>
<term>Soil Microbiology (MeSH)</term>
<term>Sphagnopsida (microbiology)</term>
<term>Temperature (MeSH)</term>
<term>Wetlands (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Soil</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Fungal</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Ascomycota</term>
<term>Mortierella</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Ascomycota</term>
<term>Microbiota</term>
<term>Mortierella</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Mortierella</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Ascomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Sphagnopsida</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biodiversity</term>
<term>Climate</term>
<term>Climate Change</term>
<term>Soil Microbiology</term>
<term>Temperature</term>
<term>Wetlands</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Peatlands play an important role in global climate change through sequestration of atmospheric CO
<sub>2</sub>
. Climate-driven changes in the structure of fungal communities in boreal peatlands that favor saprotrophic fungi can substantially impact carbon dynamics and nutrient cycling in these crucial ecosystems. In a mesocosm study using a full factorial design, 100 intact peat monoliths, complete with living Sphagnum and above-ground vascular vegetation, were subjected to three climate change variables (increased temperature, reduced water table, and elevated CO
<sub>2</sub>
concentrations). Peat litterbags were placed in mesocosms, and fungal communities in litterbags were monitored over 12 months to assess the impacts of climate change variables on peat-inhabiting fungi. Changes in fungal richness, diversity, and community composition were assessed using Illumina MiSeq sequencing of ribosomal DNA (rDNA). While general fungal richness reduced under warming conditions, Ascomycota exhibited higher diversity under increased temperature treatments over the course of the experiment. Both increased temperature and lowered water table position drove shifts in fungal community composition with a strong positive effect on endophytic and mycorrhizal fungi (including one operational taxonomic unit (OTU) tentatively identified as Barrenia panicia) and different groups of saprotrophs identified as Mortierella, Galerina, and Mycena. These shifts were observed during a predicted degradative succession in the decomposer community as different carbon substrates became available. Since fungi play a central role in peatland communities, increased abundances of saprotrophic fungi under warming conditions, at the expense of reduced fungal richness overall, may increase decomposition rates under future climate scenarios and could potentially aggravate the impacts of climate change.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27744477</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>08</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-184X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>73</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2017</Year>
<Month>04</Month>
</PubDate>
</JournalIssue>
<Title>Microbial ecology</Title>
<ISOAbbreviation>Microb Ecol</ISOAbbreviation>
</Journal>
<ArticleTitle>Experimental Climate Change Modifies Degradative Succession in Boreal Peatland Fungal Communities.</ArticleTitle>
<Pagination>
<MedlinePgn>521-531</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00248-016-0875-9</ELocationID>
<Abstract>
<AbstractText>Peatlands play an important role in global climate change through sequestration of atmospheric CO
<sub>2</sub>
. Climate-driven changes in the structure of fungal communities in boreal peatlands that favor saprotrophic fungi can substantially impact carbon dynamics and nutrient cycling in these crucial ecosystems. In a mesocosm study using a full factorial design, 100 intact peat monoliths, complete with living Sphagnum and above-ground vascular vegetation, were subjected to three climate change variables (increased temperature, reduced water table, and elevated CO
<sub>2</sub>
concentrations). Peat litterbags were placed in mesocosms, and fungal communities in litterbags were monitored over 12 months to assess the impacts of climate change variables on peat-inhabiting fungi. Changes in fungal richness, diversity, and community composition were assessed using Illumina MiSeq sequencing of ribosomal DNA (rDNA). While general fungal richness reduced under warming conditions, Ascomycota exhibited higher diversity under increased temperature treatments over the course of the experiment. Both increased temperature and lowered water table position drove shifts in fungal community composition with a strong positive effect on endophytic and mycorrhizal fungi (including one operational taxonomic unit (OTU) tentatively identified as Barrenia panicia) and different groups of saprotrophs identified as Mortierella, Galerina, and Mycena. These shifts were observed during a predicted degradative succession in the decomposer community as different carbon substrates became available. Since fungi play a central role in peatland communities, increased abundances of saprotrophic fungi under warming conditions, at the expense of reduced fungal richness overall, may increase decomposition rates under future climate scenarios and could potentially aggravate the impacts of climate change.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Asemaninejad</LastName>
<ForeName>Asma</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, The University of Western Ontario, London, Ontario, N6A 5B7, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Thorn</LastName>
<ForeName>R Greg</ForeName>
<Initials>RG</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, The University of Western Ontario, London, Ontario, N6A 5B7, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lindo</LastName>
<ForeName>Zoë</ForeName>
<Initials>Z</Initials>
<Identifier Source="ORCID">0000-0001-9942-7204</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biology, The University of Western Ontario, London, Ontario, N6A 5B7, Canada. zlindo@uwo.ca.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>10</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Microb Ecol</MedlineTA>
<NlmUniqueID>7500663</NlmUniqueID>
<ISSNLinking>0095-3628</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004271">DNA, Fungal</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001203" MajorTopicYN="N">Ascomycota</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="Y">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044822" MajorTopicYN="N">Biodiversity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002980" MajorTopicYN="N">Climate</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057231" MajorTopicYN="Y">Climate Change</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004271" MajorTopicYN="N">DNA, Fungal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064307" MajorTopicYN="N">Microbiota</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020094" MajorTopicYN="N">Mortierella</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="Y">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="Y">classification</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="N">Soil Microbiology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044003" MajorTopicYN="N">Sphagnopsida</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013696" MajorTopicYN="N">Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053833" MajorTopicYN="N">Wetlands</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Ascomycota</Keyword>
<Keyword MajorTopicYN="Y">Climate change</Keyword>
<Keyword MajorTopicYN="Y">Degradative succession</Keyword>
<Keyword MajorTopicYN="Y">Fungi</Keyword>
<Keyword MajorTopicYN="Y">Illumina MiSeq</Keyword>
<Keyword MajorTopicYN="Y">Peatlands</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>08</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>10</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>10</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>8</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>10</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27744477</ArticleId>
<ArticleId IdType="doi">10.1007/s00248-016-0875-9</ArticleId>
<ArticleId IdType="pii">10.1007/s00248-016-0875-9</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2012;7(3):e32491</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22403664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 2015 May 7;96(5):797-807</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25957468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2015 Nov-Dec;107(6):1089-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26297776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2008 Jun;64(3):433-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18430005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 1983 Oct;9(3):201-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24221701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2015 Mar 16;11(3):e1004075</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25775355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glob Chang Biol. 2016 Oct;22(10):3395-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26836961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycol Res. 2004 May;108(Pt 5):583-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15230008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2005 May-Jun;97(3):589-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16392247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Jul 02;8(7):e67019</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23843979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glob Chang Biol. 2015 Jan;21(1):388-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24957384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Aug 15;27(16):2194-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21700674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2008 Dec;11(12):1316-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19046360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Mar 9;440(7081):165-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16525463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2011 Mar;165(3):553-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21274573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2007 Aug;73(16):5261-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17586664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2012 Feb 14;13:31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22333067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2008 Feb;74(3):738-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18083870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Jul 08;11(7):e0159043</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27391306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Appl. 1991 May;1(2):182-195</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27755660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Ecol. 2002 Jun 13;2:7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12079496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol Rep. 2016 Jun 27;:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27348848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2008 Feb;10(2):339-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17903215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 May 13;10 (5):e0124726</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25969988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glob Chang Biol. 2015 Feb;21(2):959-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25156129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2012;66:265-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22726216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2013 Feb;23(2):119-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22983627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Oct 1;26(19):2460-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20709691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2011 Oct;78(1):17-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21470255</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1996 Nov;62(11):4288-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16535455</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F15 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000F15 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:27744477
   |texte=   Experimental Climate Change Modifies Degradative Succession in Boreal Peatland Fungal Communities.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:27744477" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020