Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structural features of the aromatic/arginine constriction in the aquaglyceroporin GintAQPF2 are responsible for glycerol impermeability in arbuscular mycorrhizal symbiosis.

Identifieur interne : 000E22 ( Main/Corpus ); précédent : 000E21; suivant : 000E23

Structural features of the aromatic/arginine constriction in the aquaglyceroporin GintAQPF2 are responsible for glycerol impermeability in arbuscular mycorrhizal symbiosis.

Auteurs : Tao Li ; Wen-Tao Hou ; Yuan Ruan ; Bao-Dong Chen ; Li-Guo Yang ; Cong-Zhao Zhou ; Yong-Guan Zhu

Source :

RBID : pubmed:28007220

English descriptors

Abstract

Carbon transport in arbuscular mycorrhizal (AM) symbiosis is of fundamental importance. However, the role of glycerol transport in AM symbiosis has not yet been resolved. Glycerol transport across the cell membrane is mediated by aquaglyceroporins (AQGPs), whereas our previous study revealed that it was disfavoured by GintAQPF2, an AQGP from AM fungi (AMF). Here, we analysed the function of two amino acid residues in the aromatic/arginine (ar/R) constriction known as the major selectivity filter in AQGPs. Replacement of phenylalanine-94 (Phe-94) by alanine (Ala) enlarged the diameter of the ar/R constriction and resulted in an increased intracellular glycerol accumulation and thus survival rate of yeast cells at high glycerol levels, while individual or joint replacement of Phe-94 and Ala-234 by tryptophan and glycine induced a closed state of GintAQPF2, suggesting that the potential double gates (Phe94-Phe243 and arginine-249) of the ar/R constriction also likely determined solute permeability. To figure out whether GintAQPF2 functions were relevant to the establishment of AM symbiosis, genomic analyses of four representative fungi with different lifestyles were performed. We found that glycerol facilitators existed in the facultative fungi (the ectomycorrhizal fungus Laccaria bicolor and hemibiotrophic pathogen Magnaporthe oryzae), but not in the obligatory fungi (the AMF Rhizophagus irregularis and necrotrophic pathogen Fusarium verticillioides), revealing a conserved pattern of glycerol transport in symbionts and pathogens. Our results suggested that glycerol blocks due to the special structural features of the ar/R constriction in the only AMF AQGP could potentially play a role in the establishment of AM symbiosis.

DOI: 10.1016/j.funbio.2016.09.006
PubMed: 28007220

Links to Exploration step

pubmed:28007220

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Structural features of the aromatic/arginine constriction in the aquaglyceroporin GintAQPF2 are responsible for glycerol impermeability in arbuscular mycorrhizal symbiosis.</title>
<author>
<name sortKey="Li, Tao" sort="Li, Tao" uniqKey="Li T" first="Tao" last="Li">Tao Li</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hou, Wen Tao" sort="Hou, Wen Tao" uniqKey="Hou W" first="Wen-Tao" last="Hou">Wen-Tao Hou</name>
<affiliation>
<nlm:affiliation>School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, 230027, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ruan, Yuan" sort="Ruan, Yuan" uniqKey="Ruan Y" first="Yuan" last="Ruan">Yuan Ruan</name>
<affiliation>
<nlm:affiliation>Department of Botany, University of British Columbia, Vancouver, V6T 1Z4, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Bao Dong" sort="Chen, Bao Dong" uniqKey="Chen B" first="Bao-Dong" last="Chen">Bao-Dong Chen</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China. Electronic address: bdchen@rcees.ac.cn.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yang, Li Guo" sort="Yang, Li Guo" uniqKey="Yang L" first="Li-Guo" last="Yang">Li-Guo Yang</name>
<affiliation>
<nlm:affiliation>Beijing Agricultural Machinery Experiment Appraisal Popularization Station, Beijing, 100079, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Cong Zhao" sort="Zhou, Cong Zhao" uniqKey="Zhou C" first="Cong-Zhao" last="Zhou">Cong-Zhao Zhou</name>
<affiliation>
<nlm:affiliation>School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, 230027, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhu, Yong Guan" sort="Zhu, Yong Guan" uniqKey="Zhu Y" first="Yong-Guan" last="Zhu">Yong-Guan Zhu</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian Province, 361021, China.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28007220</idno>
<idno type="pmid">28007220</idno>
<idno type="doi">10.1016/j.funbio.2016.09.006</idno>
<idno type="wicri:Area/Main/Corpus">000E22</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000E22</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Structural features of the aromatic/arginine constriction in the aquaglyceroporin GintAQPF2 are responsible for glycerol impermeability in arbuscular mycorrhizal symbiosis.</title>
<author>
<name sortKey="Li, Tao" sort="Li, Tao" uniqKey="Li T" first="Tao" last="Li">Tao Li</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hou, Wen Tao" sort="Hou, Wen Tao" uniqKey="Hou W" first="Wen-Tao" last="Hou">Wen-Tao Hou</name>
<affiliation>
<nlm:affiliation>School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, 230027, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ruan, Yuan" sort="Ruan, Yuan" uniqKey="Ruan Y" first="Yuan" last="Ruan">Yuan Ruan</name>
<affiliation>
<nlm:affiliation>Department of Botany, University of British Columbia, Vancouver, V6T 1Z4, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Bao Dong" sort="Chen, Bao Dong" uniqKey="Chen B" first="Bao-Dong" last="Chen">Bao-Dong Chen</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China. Electronic address: bdchen@rcees.ac.cn.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yang, Li Guo" sort="Yang, Li Guo" uniqKey="Yang L" first="Li-Guo" last="Yang">Li-Guo Yang</name>
<affiliation>
<nlm:affiliation>Beijing Agricultural Machinery Experiment Appraisal Popularization Station, Beijing, 100079, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Cong Zhao" sort="Zhou, Cong Zhao" uniqKey="Zhou C" first="Cong-Zhao" last="Zhou">Cong-Zhao Zhou</name>
<affiliation>
<nlm:affiliation>School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, 230027, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhu, Yong Guan" sort="Zhu, Yong Guan" uniqKey="Zhu Y" first="Yong-Guan" last="Zhu">Yong-Guan Zhu</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian Province, 361021, China.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Fungal biology</title>
<idno type="ISSN">1878-6146</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Amino Acid Substitution (MeSH)</term>
<term>Aquaglyceroporins (chemistry)</term>
<term>Aquaglyceroporins (genetics)</term>
<term>Aquaglyceroporins (metabolism)</term>
<term>Conserved Sequence (MeSH)</term>
<term>DNA Mutational Analysis (MeSH)</term>
<term>Glycerol (metabolism)</term>
<term>Models, Molecular (MeSH)</term>
<term>Mycorrhizae (enzymology)</term>
<term>Mycorrhizae (genetics)</term>
<term>Mycorrhizae (metabolism)</term>
<term>Mycorrhizae (physiology)</term>
<term>Point Mutation (MeSH)</term>
<term>Protein Conformation (MeSH)</term>
<term>Sequence Alignment (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Aquaglyceroporins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Aquaglyceroporins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Aquaglyceroporins</term>
<term>Glycerol</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Amino Acid Substitution</term>
<term>Conserved Sequence</term>
<term>DNA Mutational Analysis</term>
<term>Models, Molecular</term>
<term>Point Mutation</term>
<term>Protein Conformation</term>
<term>Sequence Alignment</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Carbon transport in arbuscular mycorrhizal (AM) symbiosis is of fundamental importance. However, the role of glycerol transport in AM symbiosis has not yet been resolved. Glycerol transport across the cell membrane is mediated by aquaglyceroporins (AQGPs), whereas our previous study revealed that it was disfavoured by GintAQPF2, an AQGP from AM fungi (AMF). Here, we analysed the function of two amino acid residues in the aromatic/arginine (ar/R) constriction known as the major selectivity filter in AQGPs. Replacement of phenylalanine-94 (Phe-94) by alanine (Ala) enlarged the diameter of the ar/R constriction and resulted in an increased intracellular glycerol accumulation and thus survival rate of yeast cells at high glycerol levels, while individual or joint replacement of Phe-94 and Ala-234 by tryptophan and glycine induced a closed state of GintAQPF2, suggesting that the potential double gates (Phe94-Phe243 and arginine-249) of the ar/R constriction also likely determined solute permeability. To figure out whether GintAQPF2 functions were relevant to the establishment of AM symbiosis, genomic analyses of four representative fungi with different lifestyles were performed. We found that glycerol facilitators existed in the facultative fungi (the ectomycorrhizal fungus Laccaria bicolor and hemibiotrophic pathogen Magnaporthe oryzae), but not in the obligatory fungi (the AMF Rhizophagus irregularis and necrotrophic pathogen Fusarium verticillioides), revealing a conserved pattern of glycerol transport in symbionts and pathogens. Our results suggested that glycerol blocks due to the special structural features of the ar/R constriction in the only AMF AQGP could potentially play a role in the establishment of AM symbiosis.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28007220</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>09</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>12</Month>
<Day>27</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">1878-6146</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>121</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2017</Year>
<Month>01</Month>
</PubDate>
</JournalIssue>
<Title>Fungal biology</Title>
<ISOAbbreviation>Fungal Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Structural features of the aromatic/arginine constriction in the aquaglyceroporin GintAQPF2 are responsible for glycerol impermeability in arbuscular mycorrhizal symbiosis.</ArticleTitle>
<Pagination>
<MedlinePgn>95-102</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S1878-6146(16)30152-0</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.funbio.2016.09.006</ELocationID>
<Abstract>
<AbstractText>Carbon transport in arbuscular mycorrhizal (AM) symbiosis is of fundamental importance. However, the role of glycerol transport in AM symbiosis has not yet been resolved. Glycerol transport across the cell membrane is mediated by aquaglyceroporins (AQGPs), whereas our previous study revealed that it was disfavoured by GintAQPF2, an AQGP from AM fungi (AMF). Here, we analysed the function of two amino acid residues in the aromatic/arginine (ar/R) constriction known as the major selectivity filter in AQGPs. Replacement of phenylalanine-94 (Phe-94) by alanine (Ala) enlarged the diameter of the ar/R constriction and resulted in an increased intracellular glycerol accumulation and thus survival rate of yeast cells at high glycerol levels, while individual or joint replacement of Phe-94 and Ala-234 by tryptophan and glycine induced a closed state of GintAQPF2, suggesting that the potential double gates (Phe94-Phe243 and arginine-249) of the ar/R constriction also likely determined solute permeability. To figure out whether GintAQPF2 functions were relevant to the establishment of AM symbiosis, genomic analyses of four representative fungi with different lifestyles were performed. We found that glycerol facilitators existed in the facultative fungi (the ectomycorrhizal fungus Laccaria bicolor and hemibiotrophic pathogen Magnaporthe oryzae), but not in the obligatory fungi (the AMF Rhizophagus irregularis and necrotrophic pathogen Fusarium verticillioides), revealing a conserved pattern of glycerol transport in symbionts and pathogens. Our results suggested that glycerol blocks due to the special structural features of the ar/R constriction in the only AMF AQGP could potentially play a role in the establishment of AM symbiosis.</AbstractText>
<CopyrightInformation>Copyright © 2016 British Mycological Society. Published by Elsevier Ltd. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Tao</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hou</LastName>
<ForeName>Wen-Tao</ForeName>
<Initials>WT</Initials>
<AffiliationInfo>
<Affiliation>School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, 230027, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ruan</LastName>
<ForeName>Yuan</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Department of Botany, University of British Columbia, Vancouver, V6T 1Z4, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Bao-Dong</ForeName>
<Initials>BD</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China. Electronic address: bdchen@rcees.ac.cn.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Li-Guo</ForeName>
<Initials>LG</Initials>
<AffiliationInfo>
<Affiliation>Beijing Agricultural Machinery Experiment Appraisal Popularization Station, Beijing, 100079, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Cong-Zhao</ForeName>
<Initials>CZ</Initials>
<AffiliationInfo>
<Affiliation>School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, 230027, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhu</LastName>
<ForeName>Yong-Guan</ForeName>
<Initials>YG</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian Province, 361021, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>10</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Fungal Biol</MedlineTA>
<NlmUniqueID>101524465</NlmUniqueID>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051397">Aquaglyceroporins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>PDC6A3C0OX</RegistryNumber>
<NameOfSubstance UI="D005990">Glycerol</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019943" MajorTopicYN="N">Amino Acid Substitution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051397" MajorTopicYN="N">Aquaglyceroporins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017124" MajorTopicYN="N">Conserved Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004252" MajorTopicYN="N">DNA Mutational Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005990" MajorTopicYN="N">Glycerol</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017354" MajorTopicYN="Y">Point Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Arbuscular mycorrhizal fungi</Keyword>
<Keyword MajorTopicYN="Y">Comparative genomic analysis</Keyword>
<Keyword MajorTopicYN="Y">Glycerol transport</Keyword>
<Keyword MajorTopicYN="Y">Major intrinsic proteins</Keyword>
<Keyword MajorTopicYN="Y">Point mutation</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>03</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2016</Year>
<Month>09</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>09</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>12</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>12</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>9</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28007220</ArticleId>
<ArticleId IdType="pii">S1878-6146(16)30152-0</ArticleId>
<ArticleId IdType="doi">10.1016/j.funbio.2016.09.006</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E22 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000E22 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:28007220
   |texte=   Structural features of the aromatic/arginine constriction in the aquaglyceroporin GintAQPF2 are responsible for glycerol impermeability in arbuscular mycorrhizal symbiosis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:28007220" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020