Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Fast and sensitive in vivo studies under controlled environmental conditions to substitute long-term field trials with genetically modified plants.

Identifieur interne : 000E20 ( Main/Corpus ); précédent : 000E19; suivant : 000E21

Fast and sensitive in vivo studies under controlled environmental conditions to substitute long-term field trials with genetically modified plants.

Auteurs : Patricia Horn ; André Schlichting ; Christel Baum ; Ute Hammesfahr ; Sören Thiele-Bruhn ; Peter Leinweber ; Inge Broer

Source :

RBID : pubmed:28011129

English descriptors

Abstract

We introduce an easy, fast and effective method to analyze the influence of genetically modified (GM) plants on soil and model organisms in the laboratory to substitute laborious and time consuming field trials. For the studies described here we focused on two GM plants of the so-called 3rd generation: GM plants producing pharmaceuticals (PMP) and plant made industrials (PMI). Cyanophycin synthetase (cphA) was chosen as model for PMI and Choleratoxin B (CTB) as model for PMP. The model genes are expressed in transgenic roots of composite Vicia hirsuta plants grown in petri dishes for semi-sterile growth or small containers filled with non-sterile soil. No significant influence of the model gene expression on root induction, growth, biomass, interaction with symbionts such as rhizobia (number, size and functionality of nodules, selection of nodulating strains) or arbuscular mycorrhizal fungi could be detected. In vitro, but not in situ under field conditions, structural diversity of the bulk soil microbial community between transgenic and non-transgenic cultivars was determined by PLFA pattern-derived ratios of bacteria: fungi and of gram+: gram- bacteria. Significant differences in PLFA ratios were associated with dissimilarities in the quantity and molecular composition of rhizodeposits as revealed by Py-FIMS analyses. Contrary to field trials, where small effects based on the transgene expression might be hidden by the immense influence of various environmental factors, our in vitro system can detect even minor effects and correlates them to transgene expression with less space, time and labour.

DOI: 10.1016/j.jbiotec.2016.12.014
PubMed: 28011129

Links to Exploration step

pubmed:28011129

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Fast and sensitive in vivo studies under controlled environmental conditions to substitute long-term field trials with genetically modified plants.</title>
<author>
<name sortKey="Horn, Patricia" sort="Horn, Patricia" uniqKey="Horn P" first="Patricia" last="Horn">Patricia Horn</name>
<affiliation>
<nlm:affiliation>Agrobiotechnology, Faculty of Agricultural and Environmental Sciences, University of Rostock, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schlichting, Andre" sort="Schlichting, Andre" uniqKey="Schlichting A" first="André" last="Schlichting">André Schlichting</name>
<affiliation>
<nlm:affiliation>Soil Science, Faculty of Agricultural and Environmental Sciences, University of Rostock, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Baum, Christel" sort="Baum, Christel" uniqKey="Baum C" first="Christel" last="Baum">Christel Baum</name>
<affiliation>
<nlm:affiliation>Soil Science, Faculty of Agricultural and Environmental Sciences, University of Rostock, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hammesfahr, Ute" sort="Hammesfahr, Ute" uniqKey="Hammesfahr U" first="Ute" last="Hammesfahr">Ute Hammesfahr</name>
<affiliation>
<nlm:affiliation>Soil Science, Faculty of Regional and Environmental Sciences, University of Trier, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Thiele Bruhn, Soren" sort="Thiele Bruhn, Soren" uniqKey="Thiele Bruhn S" first="Sören" last="Thiele-Bruhn">Sören Thiele-Bruhn</name>
<affiliation>
<nlm:affiliation>Soil Science, Faculty of Regional and Environmental Sciences, University of Trier, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Leinweber, Peter" sort="Leinweber, Peter" uniqKey="Leinweber P" first="Peter" last="Leinweber">Peter Leinweber</name>
<affiliation>
<nlm:affiliation>Soil Science, Faculty of Agricultural and Environmental Sciences, University of Rostock, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Broer, Inge" sort="Broer, Inge" uniqKey="Broer I" first="Inge" last="Broer">Inge Broer</name>
<affiliation>
<nlm:affiliation>Agrobiotechnology, Faculty of Agricultural and Environmental Sciences, University of Rostock, Germany. Electronic address: inge.broer@uni-rostock.de.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28011129</idno>
<idno type="pmid">28011129</idno>
<idno type="doi">10.1016/j.jbiotec.2016.12.014</idno>
<idno type="wicri:Area/Main/Corpus">000E20</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000E20</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Fast and sensitive in vivo studies under controlled environmental conditions to substitute long-term field trials with genetically modified plants.</title>
<author>
<name sortKey="Horn, Patricia" sort="Horn, Patricia" uniqKey="Horn P" first="Patricia" last="Horn">Patricia Horn</name>
<affiliation>
<nlm:affiliation>Agrobiotechnology, Faculty of Agricultural and Environmental Sciences, University of Rostock, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schlichting, Andre" sort="Schlichting, Andre" uniqKey="Schlichting A" first="André" last="Schlichting">André Schlichting</name>
<affiliation>
<nlm:affiliation>Soil Science, Faculty of Agricultural and Environmental Sciences, University of Rostock, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Baum, Christel" sort="Baum, Christel" uniqKey="Baum C" first="Christel" last="Baum">Christel Baum</name>
<affiliation>
<nlm:affiliation>Soil Science, Faculty of Agricultural and Environmental Sciences, University of Rostock, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hammesfahr, Ute" sort="Hammesfahr, Ute" uniqKey="Hammesfahr U" first="Ute" last="Hammesfahr">Ute Hammesfahr</name>
<affiliation>
<nlm:affiliation>Soil Science, Faculty of Regional and Environmental Sciences, University of Trier, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Thiele Bruhn, Soren" sort="Thiele Bruhn, Soren" uniqKey="Thiele Bruhn S" first="Sören" last="Thiele-Bruhn">Sören Thiele-Bruhn</name>
<affiliation>
<nlm:affiliation>Soil Science, Faculty of Regional and Environmental Sciences, University of Trier, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Leinweber, Peter" sort="Leinweber, Peter" uniqKey="Leinweber P" first="Peter" last="Leinweber">Peter Leinweber</name>
<affiliation>
<nlm:affiliation>Soil Science, Faculty of Agricultural and Environmental Sciences, University of Rostock, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Broer, Inge" sort="Broer, Inge" uniqKey="Broer I" first="Inge" last="Broer">Inge Broer</name>
<affiliation>
<nlm:affiliation>Agrobiotechnology, Faculty of Agricultural and Environmental Sciences, University of Rostock, Germany. Electronic address: inge.broer@uni-rostock.de.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of biotechnology</title>
<idno type="eISSN">1873-4863</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Agrobacterium (MeSH)</term>
<term>Bacteria (classification)</term>
<term>Bacterial Proteins (genetics)</term>
<term>Bacterial Proteins (metabolism)</term>
<term>Biomass (MeSH)</term>
<term>Environment (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Models, Genetic (MeSH)</term>
<term>Mycorrhizae (classification)</term>
<term>Peptide Synthases (genetics)</term>
<term>Peptide Synthases (metabolism)</term>
<term>Plant Proteins (analysis)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Roots (genetics)</term>
<term>Plant Roots (growth & development)</term>
<term>Plant Roots (microbiology)</term>
<term>Plants, Genetically Modified (genetics)</term>
<term>Plants, Genetically Modified (microbiology)</term>
<term>Rhizobium (classification)</term>
<term>Soil Microbiology (MeSH)</term>
<term>Spores, Fungal (MeSH)</term>
<term>Symbiosis (MeSH)</term>
<term>Vicia (genetics)</term>
<term>Vicia (metabolism)</term>
<term>Vicia (microbiology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Peptide Synthases</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Bacteria</term>
<term>Mycorrhizae</term>
<term>Rhizobium</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plant Roots</term>
<term>Plants, Genetically Modified</term>
<term>Vicia</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Peptide Synthases</term>
<term>Vicia</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Roots</term>
<term>Plants, Genetically Modified</term>
<term>Vicia</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Agrobacterium</term>
<term>Biomass</term>
<term>Environment</term>
<term>Gene Expression Regulation, Plant</term>
<term>Models, Genetic</term>
<term>Soil Microbiology</term>
<term>Spores, Fungal</term>
<term>Symbiosis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We introduce an easy, fast and effective method to analyze the influence of genetically modified (GM) plants on soil and model organisms in the laboratory to substitute laborious and time consuming field trials. For the studies described here we focused on two GM plants of the so-called 3rd generation: GM plants producing pharmaceuticals (PMP) and plant made industrials (PMI). Cyanophycin synthetase (cphA) was chosen as model for PMI and Choleratoxin B (CTB) as model for PMP. The model genes are expressed in transgenic roots of composite Vicia hirsuta plants grown in petri dishes for semi-sterile growth or small containers filled with non-sterile soil. No significant influence of the model gene expression on root induction, growth, biomass, interaction with symbionts such as rhizobia (number, size and functionality of nodules, selection of nodulating strains) or arbuscular mycorrhizal fungi could be detected. In vitro, but not in situ under field conditions, structural diversity of the bulk soil microbial community between transgenic and non-transgenic cultivars was determined by PLFA pattern-derived ratios of bacteria: fungi and of gram
<sup>+</sup>
: gram
<sup>-</sup>
bacteria. Significant differences in PLFA ratios were associated with dissimilarities in the quantity and molecular composition of rhizodeposits as revealed by Py-FIMS analyses. Contrary to field trials, where small effects based on the transgene expression might be hidden by the immense influence of various environmental factors, our in vitro system can detect even minor effects and correlates them to transgene expression with less space, time and labour.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28011129</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>04</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>04</Month>
<Day>04</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1873-4863</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>243</Volume>
<PubDate>
<Year>2017</Year>
<Month>Feb</Month>
<Day>10</Day>
</PubDate>
</JournalIssue>
<Title>Journal of biotechnology</Title>
<ISOAbbreviation>J Biotechnol</ISOAbbreviation>
</Journal>
<ArticleTitle>Fast and sensitive in vivo studies under controlled environmental conditions to substitute long-term field trials with genetically modified plants.</ArticleTitle>
<Pagination>
<MedlinePgn>48-60</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S0168-1656(16)31661-3</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.jbiotec.2016.12.014</ELocationID>
<Abstract>
<AbstractText>We introduce an easy, fast and effective method to analyze the influence of genetically modified (GM) plants on soil and model organisms in the laboratory to substitute laborious and time consuming field trials. For the studies described here we focused on two GM plants of the so-called 3rd generation: GM plants producing pharmaceuticals (PMP) and plant made industrials (PMI). Cyanophycin synthetase (cphA) was chosen as model for PMI and Choleratoxin B (CTB) as model for PMP. The model genes are expressed in transgenic roots of composite Vicia hirsuta plants grown in petri dishes for semi-sterile growth or small containers filled with non-sterile soil. No significant influence of the model gene expression on root induction, growth, biomass, interaction with symbionts such as rhizobia (number, size and functionality of nodules, selection of nodulating strains) or arbuscular mycorrhizal fungi could be detected. In vitro, but not in situ under field conditions, structural diversity of the bulk soil microbial community between transgenic and non-transgenic cultivars was determined by PLFA pattern-derived ratios of bacteria: fungi and of gram
<sup>+</sup>
: gram
<sup>-</sup>
bacteria. Significant differences in PLFA ratios were associated with dissimilarities in the quantity and molecular composition of rhizodeposits as revealed by Py-FIMS analyses. Contrary to field trials, where small effects based on the transgene expression might be hidden by the immense influence of various environmental factors, our in vitro system can detect even minor effects and correlates them to transgene expression with less space, time and labour.</AbstractText>
<CopyrightInformation>Copyright © 2016 Elsevier B.V. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Horn</LastName>
<ForeName>Patricia</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Agrobiotechnology, Faculty of Agricultural and Environmental Sciences, University of Rostock, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schlichting</LastName>
<ForeName>André</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Soil Science, Faculty of Agricultural and Environmental Sciences, University of Rostock, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Baum</LastName>
<ForeName>Christel</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Soil Science, Faculty of Agricultural and Environmental Sciences, University of Rostock, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hammesfahr</LastName>
<ForeName>Ute</ForeName>
<Initials>U</Initials>
<AffiliationInfo>
<Affiliation>Soil Science, Faculty of Regional and Environmental Sciences, University of Trier, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Thiele-Bruhn</LastName>
<ForeName>Sören</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Soil Science, Faculty of Regional and Environmental Sciences, University of Trier, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Leinweber</LastName>
<ForeName>Peter</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Soil Science, Faculty of Agricultural and Environmental Sciences, University of Rostock, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Broer</LastName>
<ForeName>Inge</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Agrobiotechnology, Faculty of Agricultural and Environmental Sciences, University of Rostock, Germany. Electronic address: inge.broer@uni-rostock.de.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>12</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>J Biotechnol</MedlineTA>
<NlmUniqueID>8411927</NlmUniqueID>
<ISSNLinking>0168-1656</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C024250">cyanophycin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 6.3.2.-</RegistryNumber>
<NameOfSubstance UI="D010453">Peptide Synthases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 6.3.2.-</RegistryNumber>
<NameOfSubstance UI="C113257">cyanophycin synthase, bacteria</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D060054" MajorTopicYN="N">Agrobacterium</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001419" MajorTopicYN="N">Bacteria</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="N">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004777" MajorTopicYN="Y">Environment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008957" MajorTopicYN="N">Models, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010453" MajorTopicYN="N">Peptide Synthases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012231" MajorTopicYN="N">Rhizobium</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="Y">Soil Microbiology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013172" MajorTopicYN="N">Spores, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D031306" MajorTopicYN="N">Vicia</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Agrobacterium rhizogenes</Keyword>
<Keyword MajorTopicYN="N">Bacteria-soil-plant interaction</Keyword>
<Keyword MajorTopicYN="N">Composite Vicia hirsuta</Keyword>
<Keyword MajorTopicYN="N">Rhizosphere ecology</Keyword>
<Keyword MajorTopicYN="N">Risk assessment</Keyword>
<Keyword MajorTopicYN="N">Root exudates</Keyword>
<Keyword MajorTopicYN="N">Soil</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>10</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2016</Year>
<Month>12</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>12</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>12</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>4</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>12</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28011129</ArticleId>
<ArticleId IdType="pii">S0168-1656(16)31661-3</ArticleId>
<ArticleId IdType="doi">10.1016/j.jbiotec.2016.12.014</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E20 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000E20 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:28011129
   |texte=   Fast and sensitive in vivo studies under controlled environmental conditions to substitute long-term field trials with genetically modified plants.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:28011129" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020