Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

How interacting fungal species and mineral nitrogen inputs affect transfer of nitrogen from litter via arbuscular mycorrhizal mycelium.

Identifieur interne : 000D49 ( Main/Corpus ); précédent : 000D48; suivant : 000D50

How interacting fungal species and mineral nitrogen inputs affect transfer of nitrogen from litter via arbuscular mycorrhizal mycelium.

Auteurs : Yuejun He ; J Hans C. Cornelissen ; Zhangcheng Zhong ; Ming Dong ; Changhong Jiang

Source :

RBID : pubmed:28258426

English descriptors

Abstract

In the karst landscape, widespread in the world including southern China, soil nutrient supply is strongly constrained. In such environments, arbuscular mycorrhizal (AM) fungi may facilitate plant nutrient uptake. However, the possible role of different AM fungal species, and their interactions, especially in transferring nitrogen (N) from litter to plant, is poorly understood. We conducted two microcosm experiments to investigate the role that two karst soil AM fungi, Glomus etunicatum and Glomus mosseae, play in the transfer of N from decomposing litter to the host plant and to determine how N availability influences these processes. In experiment 1, Cinnamomum camphora tree seedlings were grown in compartments inoculated with G. etunicatum. Lolium perenne leaf litter labeled with δ15N was added to the soil in unplanted compartments. Compartments containing the δ15N labeled litter were either accessible to hyphae but not to seedling roots or were not accessible to hyphae or roots. The addition of mineral N to one of the host compartments at the start of the experiment significantly increased the biomass of the C. camphora seedlings, N content and N:P ratio, AM mycelium length, and soil microbial biomass carbon and N. However, significantly, more δ15N was acquired, from the leaf litter by the AM hyphae and transferred to the host when mineral N was not added to the soil. In experiment 2, in which C. camphora seedlings were inoculated with both G. etunicatum and G. mosseae rather than with G. mosseae alone, there was a significant increase in mycelial growth (50.21%), in soil microbial biomass carbon (417.73%) in the rhizosphere, and in the amount of δ15N that was transferred to the host. These findings suggest that maintaining AM fungal diversity in karst soils could be important for mediating N transfer from organic material to host plants in N-poor soils.

DOI: 10.1007/s11356-017-8649-6
PubMed: 28258426

Links to Exploration step

pubmed:28258426

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">How interacting fungal species and mineral nitrogen inputs affect transfer of nitrogen from litter via arbuscular mycorrhizal mycelium.</title>
<author>
<name sortKey="He, Yuejun" sort="He, Yuejun" uniqKey="He Y" first="Yuejun" last="He">Yuejun He</name>
<affiliation>
<nlm:affiliation>Forestry College, Research Center of Forest Resources and Environment of Guizhou Province, Guizhou University, Huaxi, Guiyang, People's Republic of China. hyj1358@163.com.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Laboratory of Quantitative Vegetation Ecology, Institute of Botany, The Chinese Academy of Sciences, Xiangshan Nanxincun, Beijing, People's Republic of China. hyj1358@163.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cornelissen, J Hans C" sort="Cornelissen, J Hans C" uniqKey="Cornelissen J" first="J Hans C" last="Cornelissen">J Hans C. Cornelissen</name>
<affiliation>
<nlm:affiliation>Systems Ecology Department of Ecological Science, Faculty of Earth and Life Sciences, VU University (Vrije Universiteit) Amsterdam, De Boelelaan 1085, Amsterdam, HV, 1081, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhong, Zhangcheng" sort="Zhong, Zhangcheng" uniqKey="Zhong Z" first="Zhangcheng" last="Zhong">Zhangcheng Zhong</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education)/Life Science College, Southwest University, Beibei, Chongqing, People's Republic of China. zzhong@swu.edu.cn.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dong, Ming" sort="Dong, Ming" uniqKey="Dong M" first="Ming" last="Dong">Ming Dong</name>
<affiliation>
<nlm:affiliation>Laboratory of Quantitative Vegetation Ecology, Institute of Botany, The Chinese Academy of Sciences, Xiangshan Nanxincun, Beijing, People's Republic of China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jiang, Changhong" sort="Jiang, Changhong" uniqKey="Jiang C" first="Changhong" last="Jiang">Changhong Jiang</name>
<affiliation>
<nlm:affiliation>Forestry College, Research Center of Forest Resources and Environment of Guizhou Province, Guizhou University, Huaxi, Guiyang, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28258426</idno>
<idno type="pmid">28258426</idno>
<idno type="doi">10.1007/s11356-017-8649-6</idno>
<idno type="wicri:Area/Main/Corpus">000D49</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000D49</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">How interacting fungal species and mineral nitrogen inputs affect transfer of nitrogen from litter via arbuscular mycorrhizal mycelium.</title>
<author>
<name sortKey="He, Yuejun" sort="He, Yuejun" uniqKey="He Y" first="Yuejun" last="He">Yuejun He</name>
<affiliation>
<nlm:affiliation>Forestry College, Research Center of Forest Resources and Environment of Guizhou Province, Guizhou University, Huaxi, Guiyang, People's Republic of China. hyj1358@163.com.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Laboratory of Quantitative Vegetation Ecology, Institute of Botany, The Chinese Academy of Sciences, Xiangshan Nanxincun, Beijing, People's Republic of China. hyj1358@163.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cornelissen, J Hans C" sort="Cornelissen, J Hans C" uniqKey="Cornelissen J" first="J Hans C" last="Cornelissen">J Hans C. Cornelissen</name>
<affiliation>
<nlm:affiliation>Systems Ecology Department of Ecological Science, Faculty of Earth and Life Sciences, VU University (Vrije Universiteit) Amsterdam, De Boelelaan 1085, Amsterdam, HV, 1081, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhong, Zhangcheng" sort="Zhong, Zhangcheng" uniqKey="Zhong Z" first="Zhangcheng" last="Zhong">Zhangcheng Zhong</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education)/Life Science College, Southwest University, Beibei, Chongqing, People's Republic of China. zzhong@swu.edu.cn.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dong, Ming" sort="Dong, Ming" uniqKey="Dong M" first="Ming" last="Dong">Ming Dong</name>
<affiliation>
<nlm:affiliation>Laboratory of Quantitative Vegetation Ecology, Institute of Botany, The Chinese Academy of Sciences, Xiangshan Nanxincun, Beijing, People's Republic of China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jiang, Changhong" sort="Jiang, Changhong" uniqKey="Jiang C" first="Changhong" last="Jiang">Changhong Jiang</name>
<affiliation>
<nlm:affiliation>Forestry College, Research Center of Forest Resources and Environment of Guizhou Province, Guizhou University, Huaxi, Guiyang, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Environmental science and pollution research international</title>
<idno type="eISSN">1614-7499</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>China (MeSH)</term>
<term>Glomeromycota (MeSH)</term>
<term>Mycelium (MeSH)</term>
<term>Mycorrhizae (MeSH)</term>
<term>Nitrogen (MeSH)</term>
<term>Plant Roots (microbiology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Nitrogen</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>China</term>
<term>Glomeromycota</term>
<term>Mycelium</term>
<term>Mycorrhizae</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In the karst landscape, widespread in the world including southern China, soil nutrient supply is strongly constrained. In such environments, arbuscular mycorrhizal (AM) fungi may facilitate plant nutrient uptake. However, the possible role of different AM fungal species, and their interactions, especially in transferring nitrogen (N) from litter to plant, is poorly understood. We conducted two microcosm experiments to investigate the role that two karst soil AM fungi, Glomus etunicatum and Glomus mosseae, play in the transfer of N from decomposing litter to the host plant and to determine how N availability influences these processes. In experiment 1, Cinnamomum camphora tree seedlings were grown in compartments inoculated with G. etunicatum. Lolium perenne leaf litter labeled with δ
<sup>15</sup>
N was added to the soil in unplanted compartments. Compartments containing the δ
<sup>15</sup>
N labeled litter were either accessible to hyphae but not to seedling roots or were not accessible to hyphae or roots. The addition of mineral N to one of the host compartments at the start of the experiment significantly increased the biomass of the C. camphora seedlings, N content and N:P ratio, AM mycelium length, and soil microbial biomass carbon and N. However, significantly, more δ
<sup>15</sup>
N was acquired, from the leaf litter by the AM hyphae and transferred to the host when mineral N was not added to the soil. In experiment 2, in which C. camphora seedlings were inoculated with both G. etunicatum and G. mosseae rather than with G. mosseae alone, there was a significant increase in mycelial growth (50.21%), in soil microbial biomass carbon (417.73%) in the rhizosphere, and in the amount of δ
<sup>15</sup>
N that was transferred to the host. These findings suggest that maintaining AM fungal diversity in karst soils could be important for mediating N transfer from organic material to host plants in N-poor soils.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28258426</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>06</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1614-7499</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>24</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2017</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Environmental science and pollution research international</Title>
<ISOAbbreviation>Environ Sci Pollut Res Int</ISOAbbreviation>
</Journal>
<ArticleTitle>How interacting fungal species and mineral nitrogen inputs affect transfer of nitrogen from litter via arbuscular mycorrhizal mycelium.</ArticleTitle>
<Pagination>
<MedlinePgn>9791-9801</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s11356-017-8649-6</ELocationID>
<Abstract>
<AbstractText>In the karst landscape, widespread in the world including southern China, soil nutrient supply is strongly constrained. In such environments, arbuscular mycorrhizal (AM) fungi may facilitate plant nutrient uptake. However, the possible role of different AM fungal species, and their interactions, especially in transferring nitrogen (N) from litter to plant, is poorly understood. We conducted two microcosm experiments to investigate the role that two karst soil AM fungi, Glomus etunicatum and Glomus mosseae, play in the transfer of N from decomposing litter to the host plant and to determine how N availability influences these processes. In experiment 1, Cinnamomum camphora tree seedlings were grown in compartments inoculated with G. etunicatum. Lolium perenne leaf litter labeled with δ
<sup>15</sup>
N was added to the soil in unplanted compartments. Compartments containing the δ
<sup>15</sup>
N labeled litter were either accessible to hyphae but not to seedling roots or were not accessible to hyphae or roots. The addition of mineral N to one of the host compartments at the start of the experiment significantly increased the biomass of the C. camphora seedlings, N content and N:P ratio, AM mycelium length, and soil microbial biomass carbon and N. However, significantly, more δ
<sup>15</sup>
N was acquired, from the leaf litter by the AM hyphae and transferred to the host when mineral N was not added to the soil. In experiment 2, in which C. camphora seedlings were inoculated with both G. etunicatum and G. mosseae rather than with G. mosseae alone, there was a significant increase in mycelial growth (50.21%), in soil microbial biomass carbon (417.73%) in the rhizosphere, and in the amount of δ
<sup>15</sup>
N that was transferred to the host. These findings suggest that maintaining AM fungal diversity in karst soils could be important for mediating N transfer from organic material to host plants in N-poor soils.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>He</LastName>
<ForeName>Yuejun</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Forestry College, Research Center of Forest Resources and Environment of Guizhou Province, Guizhou University, Huaxi, Guiyang, People's Republic of China. hyj1358@163.com.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Laboratory of Quantitative Vegetation Ecology, Institute of Botany, The Chinese Academy of Sciences, Xiangshan Nanxincun, Beijing, People's Republic of China. hyj1358@163.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cornelissen</LastName>
<ForeName>J Hans C</ForeName>
<Initials>JH</Initials>
<AffiliationInfo>
<Affiliation>Systems Ecology Department of Ecological Science, Faculty of Earth and Life Sciences, VU University (Vrije Universiteit) Amsterdam, De Boelelaan 1085, Amsterdam, HV, 1081, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhong</LastName>
<ForeName>Zhangcheng</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education)/Life Science College, Southwest University, Beibei, Chongqing, People's Republic of China. zzhong@swu.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dong</LastName>
<ForeName>Ming</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Quantitative Vegetation Ecology, Institute of Botany, The Chinese Academy of Sciences, Xiangshan Nanxincun, Beijing, People's Republic of China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jiang</LastName>
<ForeName>Changhong</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Forestry College, Research Center of Forest Resources and Environment of Guizhou Province, Guizhou University, Huaxi, Guiyang, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>03</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Environ Sci Pollut Res Int</MedlineTA>
<NlmUniqueID>9441769</NlmUniqueID>
<ISSNLinking>0944-1344</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002681" MajorTopicYN="N">China</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055137" MajorTopicYN="N">Glomeromycota</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025282" MajorTopicYN="N">Mycelium</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="Y">Mycorrhizae</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="Y">Nitrogen</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Arbuscular mycorrhizae</Keyword>
<Keyword MajorTopicYN="N">Litter</Keyword>
<Keyword MajorTopicYN="N">Nitrogen</Keyword>
<Keyword MajorTopicYN="N">Transfer</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>02</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>02</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>3</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>6</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>3</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28258426</ArticleId>
<ArticleId IdType="doi">10.1007/s11356-017-8649-6</ArticleId>
<ArticleId IdType="pii">10.1007/s11356-017-8649-6</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mycorrhiza. 2015 Oct;25(7):533-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25708401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;170(1):143-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16539611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2011;62:227-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21391813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Microbiol. 1980 Apr;26(4):536-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6155191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2003;41:271-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;181(1):199-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18811615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2006 Jul;16(5):299-363</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16845554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2016 Aug;39(8):1683-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26510552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1996 Dec 6;274(5293):1720-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8939865</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Aug 3;107(31):13754-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20631302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Sep 20;413(6853):297-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11565029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Mar;205(4):1473-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25417818</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D49 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000D49 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:28258426
   |texte=   How interacting fungal species and mineral nitrogen inputs affect transfer of nitrogen from litter via arbuscular mycorrhizal mycelium.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:28258426" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020