Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Experimental evidence that mycorrhizal nitrogen strategies affect soil carbon.

Identifieur interne : 000D21 ( Main/Corpus ); précédent : 000D20; suivant : 000D22

Experimental evidence that mycorrhizal nitrogen strategies affect soil carbon.

Auteurs : Nina Wurzburger ; E N Jack Brookshire

Source :

RBID : pubmed:28369878

English descriptors

Abstract

Most land plants acquire nitrogen (N) through associations with arbuscular (AM) and ectomycorrhizal (ECM) fungi, but these symbionts employ contrasting strategies for N acquisition, which may lead to different stocks of soil carbon (C). We experimentally test this hypothesis with a mesocosm system where AM and ECM tree seedling roots, or their hyphae only, could access mineral soils with 13 C- and 15 N-enriched organic matter. We quantified loss of soil C and N, plant uptake of N and new inputs of plant C to soil. We found that AM, but not ECM, seedlings reduced soil C relative to controls. Soil C loss was greater in the presence of roots relative to hyphae only for both AM and ECM seedlings, but was correlated with plant N uptake for AM seedlings only. While new plant C inputs stimulated soil C loss in both symbioses, we detected plant C inputs more frequently and measured higher rates of decomposer activity in soils colonized by AM relative to ECM seedlings. Our study experimentally demonstrates how mycorrhizal strategies for N can affect soil C and C:N, even at the scale of an individual plant. Such effects may contribute to broad patterns in soil C across terrestrial ecosystems.

DOI: 10.1002/ecy.1827
PubMed: 28369878

Links to Exploration step

pubmed:28369878

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Experimental evidence that mycorrhizal nitrogen strategies affect soil carbon.</title>
<author>
<name sortKey="Wurzburger, Nina" sort="Wurzburger, Nina" uniqKey="Wurzburger N" first="Nina" last="Wurzburger">Nina Wurzburger</name>
<affiliation>
<nlm:affiliation>Odum School of Ecology, University of Georgia, 140 East Green Street, Athens, Georgia, 30602, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Brookshire, E N Jack" sort="Brookshire, E N Jack" uniqKey="Brookshire E" first="E N Jack" last="Brookshire">E N Jack Brookshire</name>
<affiliation>
<nlm:affiliation>Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, 59717, USA.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28369878</idno>
<idno type="pmid">28369878</idno>
<idno type="doi">10.1002/ecy.1827</idno>
<idno type="wicri:Area/Main/Corpus">000D21</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000D21</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Experimental evidence that mycorrhizal nitrogen strategies affect soil carbon.</title>
<author>
<name sortKey="Wurzburger, Nina" sort="Wurzburger, Nina" uniqKey="Wurzburger N" first="Nina" last="Wurzburger">Nina Wurzburger</name>
<affiliation>
<nlm:affiliation>Odum School of Ecology, University of Georgia, 140 East Green Street, Athens, Georgia, 30602, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Brookshire, E N Jack" sort="Brookshire, E N Jack" uniqKey="Brookshire E" first="E N Jack" last="Brookshire">E N Jack Brookshire</name>
<affiliation>
<nlm:affiliation>Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, 59717, USA.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Ecology</title>
<idno type="ISSN">0012-9658</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carbon (analysis)</term>
<term>Carbon (metabolism)</term>
<term>Mycorrhizae (physiology)</term>
<term>Nitrogen (metabolism)</term>
<term>Plant Roots (MeSH)</term>
<term>Soil (chemistry)</term>
<term>Soil Microbiology (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Carbon</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Soil</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbon</term>
<term>Nitrogen</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Plant Roots</term>
<term>Soil Microbiology</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Most land plants acquire nitrogen (N) through associations with arbuscular (AM) and ectomycorrhizal (ECM) fungi, but these symbionts employ contrasting strategies for N acquisition, which may lead to different stocks of soil carbon (C). We experimentally test this hypothesis with a mesocosm system where AM and ECM tree seedling roots, or their hyphae only, could access mineral soils with
<sup>13</sup>
C- and
<sup>15</sup>
N-enriched organic matter. We quantified loss of soil C and N, plant uptake of N and new inputs of plant C to soil. We found that AM, but not ECM, seedlings reduced soil C relative to controls. Soil C loss was greater in the presence of roots relative to hyphae only for both AM and ECM seedlings, but was correlated with plant N uptake for AM seedlings only. While new plant C inputs stimulated soil C loss in both symbioses, we detected plant C inputs more frequently and measured higher rates of decomposer activity in soils colonized by AM relative to ECM seedlings. Our study experimentally demonstrates how mycorrhizal strategies for N can affect soil C and C:N, even at the scale of an individual plant. Such effects may contribute to broad patterns in soil C across terrestrial ecosystems.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">28369878</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>11</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>06</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0012-9658</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>98</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2017</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Ecology</Title>
<ISOAbbreviation>Ecology</ISOAbbreviation>
</Journal>
<ArticleTitle>Experimental evidence that mycorrhizal nitrogen strategies affect soil carbon.</ArticleTitle>
<Pagination>
<MedlinePgn>1491-1497</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/ecy.1827</ELocationID>
<Abstract>
<AbstractText>Most land plants acquire nitrogen (N) through associations with arbuscular (AM) and ectomycorrhizal (ECM) fungi, but these symbionts employ contrasting strategies for N acquisition, which may lead to different stocks of soil carbon (C). We experimentally test this hypothesis with a mesocosm system where AM and ECM tree seedling roots, or their hyphae only, could access mineral soils with
<sup>13</sup>
C- and
<sup>15</sup>
N-enriched organic matter. We quantified loss of soil C and N, plant uptake of N and new inputs of plant C to soil. We found that AM, but not ECM, seedlings reduced soil C relative to controls. Soil C loss was greater in the presence of roots relative to hyphae only for both AM and ECM seedlings, but was correlated with plant N uptake for AM seedlings only. While new plant C inputs stimulated soil C loss in both symbioses, we detected plant C inputs more frequently and measured higher rates of decomposer activity in soils colonized by AM relative to ECM seedlings. Our study experimentally demonstrates how mycorrhizal strategies for N can affect soil C and C:N, even at the scale of an individual plant. Such effects may contribute to broad patterns in soil C across terrestrial ecosystems.</AbstractText>
<CopyrightInformation>© 2017 by the Ecological Society of America.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wurzburger</LastName>
<ForeName>Nina</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Odum School of Ecology, University of Georgia, 140 East Green Street, Athens, Georgia, 30602, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Brookshire</LastName>
<ForeName>E N Jack</ForeName>
<Initials>ENJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, 59717, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>05</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Ecology</MedlineTA>
<NlmUniqueID>0043541</NlmUniqueID>
<ISSNLinking>0012-9658</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7440-44-0</RegistryNumber>
<NameOfSubstance UI="D002244">Carbon</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002244" MajorTopicYN="N">Carbon</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="N">Soil Microbiology</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">arbuscular mycorrhizal fungi</Keyword>
<Keyword MajorTopicYN="N">carbon</Keyword>
<Keyword MajorTopicYN="N">decomposition</Keyword>
<Keyword MajorTopicYN="N">ecosystem biogeochemistry</Keyword>
<Keyword MajorTopicYN="N">ectomycorrhizal fungi</Keyword>
<Keyword MajorTopicYN="N">nitrogen</Keyword>
<Keyword MajorTopicYN="N">soil organic matter</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>11</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2017</Year>
<Month>02</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>03</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>4</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>11</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>4</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28369878</ArticleId>
<ArticleId IdType="doi">10.1002/ecy.1827</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D21 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000D21 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:28369878
   |texte=   Experimental evidence that mycorrhizal nitrogen strategies affect soil carbon.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:28369878" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020