Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Comparative Genomics of the Ectomycorrhizal Sister Species Rhizopogon vinicolor and Rhizopogon vesiculosus (Basidiomycota: Boletales) Reveals a Divergence of the Mating Type B Locus.

Identifieur interne : 000C94 ( Main/Corpus ); précédent : 000C93; suivant : 000C95

Comparative Genomics of the Ectomycorrhizal Sister Species Rhizopogon vinicolor and Rhizopogon vesiculosus (Basidiomycota: Boletales) Reveals a Divergence of the Mating Type B Locus.

Auteurs : Alija Bajro Mujic ; Alan Kuo ; Andrew Tritt ; Anna Lipzen ; Cindy Chen ; Jenifer Johnson ; Aditi Sharma ; Kerrie Barry ; Igor V. Grigoriev ; Joseph W. Spatafora

Source :

RBID : pubmed:28450370

English descriptors

Abstract

Divergence of breeding system plays an important role in fungal speciation. Ectomycorrhizal fungi, however, pose a challenge for the study of reproductive biology because most cannot be mated under laboratory conditions. To overcome this barrier, we sequenced the draft genomes of the ectomycorrhizal sister species Rhizopogon vinicolor Smith and Zeller and R. vesiculosus Smith and Zeller (Basidiomycota, Boletales)-the first genomes available for Basidiomycota truffles-and characterized gene content and organization surrounding their mating type loci. Both species possess a pair of homeodomain transcription factor homologs at the mating type A-locus as well as pheromone receptor and pheromone precursor homologs at the mating type B-locus. Comparison of Rhizopogon genomes with genomes from Boletales, Agaricales, and Polyporales revealed synteny of the A-locus region within Boletales, but several genomic rearrangements across orders. Our findings suggest correlation between gene content at the B-locus region and breeding system in Boletales with tetrapolar species possessing more diverse gene content than bipolar species. Rhizopogon vinicolor possesses a greater number of B-locus pheromone receptor and precursor genes than R. vesiculosus, as well as a pair of isoprenyl cysteine methyltransferase genes flanking the B-locus compared to a single copy in R. vesiculosus Examination of dikaryotic single nucleotide polymorphisms within genomes revealed greater heterozygosity in R. vinicolor, consistent with increased rates of outcrossing. Both species possess the components of a heterothallic breeding system with R. vinicolor possessing a B-locus region structure consistent with tetrapolar Boletales and R. vesiculosus possessing a B-locus region structure intermediate between bipolar and tetrapolar Boletales.

DOI: 10.1534/g3.117.039396
PubMed: 28450370
PubMed Central: PMC5473757

Links to Exploration step

pubmed:28450370

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Comparative Genomics of the Ectomycorrhizal Sister Species
<i>Rhizopogon vinicolor</i>
and
<i>Rhizopogon vesiculosus</i>
(Basidiomycota: Boletales) Reveals a Divergence of the Mating Type
<i>B</i>
Locus.</title>
<author>
<name sortKey="Mujic, Alija Bajro" sort="Mujic, Alija Bajro" uniqKey="Mujic A" first="Alija Bajro" last="Mujic">Alija Bajro Mujic</name>
<affiliation>
<nlm:affiliation>Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331 amujic@gmail.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kuo, Alan" sort="Kuo, Alan" uniqKey="Kuo A" first="Alan" last="Kuo">Alan Kuo</name>
<affiliation>
<nlm:affiliation>Joint Genome Institute, United States Department of Energy, Walnut Creek, California 95458.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tritt, Andrew" sort="Tritt, Andrew" uniqKey="Tritt A" first="Andrew" last="Tritt">Andrew Tritt</name>
<affiliation>
<nlm:affiliation>Joint Genome Institute, United States Department of Energy, Walnut Creek, California 95458.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lipzen, Anna" sort="Lipzen, Anna" uniqKey="Lipzen A" first="Anna" last="Lipzen">Anna Lipzen</name>
<affiliation>
<nlm:affiliation>Joint Genome Institute, United States Department of Energy, Walnut Creek, California 95458.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Cindy" sort="Chen, Cindy" uniqKey="Chen C" first="Cindy" last="Chen">Cindy Chen</name>
<affiliation>
<nlm:affiliation>Joint Genome Institute, United States Department of Energy, Walnut Creek, California 95458.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Johnson, Jenifer" sort="Johnson, Jenifer" uniqKey="Johnson J" first="Jenifer" last="Johnson">Jenifer Johnson</name>
<affiliation>
<nlm:affiliation>Joint Genome Institute, United States Department of Energy, Walnut Creek, California 95458.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sharma, Aditi" sort="Sharma, Aditi" uniqKey="Sharma A" first="Aditi" last="Sharma">Aditi Sharma</name>
<affiliation>
<nlm:affiliation>Joint Genome Institute, United States Department of Energy, Walnut Creek, California 95458.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Barry, Kerrie" sort="Barry, Kerrie" uniqKey="Barry K" first="Kerrie" last="Barry">Kerrie Barry</name>
<affiliation>
<nlm:affiliation>Joint Genome Institute, United States Department of Energy, Walnut Creek, California 95458.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Grigoriev, Igor V" sort="Grigoriev, Igor V" uniqKey="Grigoriev I" first="Igor V" last="Grigoriev">Igor V. Grigoriev</name>
<affiliation>
<nlm:affiliation>Joint Genome Institute, United States Department of Energy, Walnut Creek, California 95458.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Spatafora, Joseph W" sort="Spatafora, Joseph W" uniqKey="Spatafora J" first="Joseph W" last="Spatafora">Joseph W. Spatafora</name>
<affiliation>
<nlm:affiliation>Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28450370</idno>
<idno type="pmid">28450370</idno>
<idno type="doi">10.1534/g3.117.039396</idno>
<idno type="pmc">PMC5473757</idno>
<idno type="wicri:Area/Main/Corpus">000C94</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000C94</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Comparative Genomics of the Ectomycorrhizal Sister Species
<i>Rhizopogon vinicolor</i>
and
<i>Rhizopogon vesiculosus</i>
(Basidiomycota: Boletales) Reveals a Divergence of the Mating Type
<i>B</i>
Locus.</title>
<author>
<name sortKey="Mujic, Alija Bajro" sort="Mujic, Alija Bajro" uniqKey="Mujic A" first="Alija Bajro" last="Mujic">Alija Bajro Mujic</name>
<affiliation>
<nlm:affiliation>Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331 amujic@gmail.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kuo, Alan" sort="Kuo, Alan" uniqKey="Kuo A" first="Alan" last="Kuo">Alan Kuo</name>
<affiliation>
<nlm:affiliation>Joint Genome Institute, United States Department of Energy, Walnut Creek, California 95458.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tritt, Andrew" sort="Tritt, Andrew" uniqKey="Tritt A" first="Andrew" last="Tritt">Andrew Tritt</name>
<affiliation>
<nlm:affiliation>Joint Genome Institute, United States Department of Energy, Walnut Creek, California 95458.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lipzen, Anna" sort="Lipzen, Anna" uniqKey="Lipzen A" first="Anna" last="Lipzen">Anna Lipzen</name>
<affiliation>
<nlm:affiliation>Joint Genome Institute, United States Department of Energy, Walnut Creek, California 95458.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Cindy" sort="Chen, Cindy" uniqKey="Chen C" first="Cindy" last="Chen">Cindy Chen</name>
<affiliation>
<nlm:affiliation>Joint Genome Institute, United States Department of Energy, Walnut Creek, California 95458.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Johnson, Jenifer" sort="Johnson, Jenifer" uniqKey="Johnson J" first="Jenifer" last="Johnson">Jenifer Johnson</name>
<affiliation>
<nlm:affiliation>Joint Genome Institute, United States Department of Energy, Walnut Creek, California 95458.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sharma, Aditi" sort="Sharma, Aditi" uniqKey="Sharma A" first="Aditi" last="Sharma">Aditi Sharma</name>
<affiliation>
<nlm:affiliation>Joint Genome Institute, United States Department of Energy, Walnut Creek, California 95458.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Barry, Kerrie" sort="Barry, Kerrie" uniqKey="Barry K" first="Kerrie" last="Barry">Kerrie Barry</name>
<affiliation>
<nlm:affiliation>Joint Genome Institute, United States Department of Energy, Walnut Creek, California 95458.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Grigoriev, Igor V" sort="Grigoriev, Igor V" uniqKey="Grigoriev I" first="Igor V" last="Grigoriev">Igor V. Grigoriev</name>
<affiliation>
<nlm:affiliation>Joint Genome Institute, United States Department of Energy, Walnut Creek, California 95458.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Spatafora, Joseph W" sort="Spatafora, Joseph W" uniqKey="Spatafora J" first="Joseph W" last="Spatafora">Joseph W. Spatafora</name>
<affiliation>
<nlm:affiliation>Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">G3 (Bethesda, Md.)</title>
<idno type="eISSN">2160-1836</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Basidiomycota (classification)</term>
<term>Basidiomycota (genetics)</term>
<term>Chromosome Mapping (MeSH)</term>
<term>Computational Biology (methods)</term>
<term>Genes, Mating Type, Fungal (MeSH)</term>
<term>Genome, Fungal (MeSH)</term>
<term>Genome-Wide Association Study (MeSH)</term>
<term>Genomics (methods)</term>
<term>Genotype (MeSH)</term>
<term>High-Throughput Nucleotide Sequencing (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Mycorrhizae (classification)</term>
<term>Mycorrhizae (genetics)</term>
<term>Phylogeny (MeSH)</term>
<term>Polymorphism, Single Nucleotide (MeSH)</term>
<term>Quantitative Trait Loci (MeSH)</term>
<term>Quantitative Trait, Heritable (MeSH)</term>
<term>Synteny (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Basidiomycota</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Basidiomycota</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Computational Biology</term>
<term>Genomics</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Chromosome Mapping</term>
<term>Genes, Mating Type, Fungal</term>
<term>Genome, Fungal</term>
<term>Genome-Wide Association Study</term>
<term>Genotype</term>
<term>High-Throughput Nucleotide Sequencing</term>
<term>Mutation</term>
<term>Phylogeny</term>
<term>Polymorphism, Single Nucleotide</term>
<term>Quantitative Trait Loci</term>
<term>Quantitative Trait, Heritable</term>
<term>Synteny</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Divergence of breeding system plays an important role in fungal speciation. Ectomycorrhizal fungi, however, pose a challenge for the study of reproductive biology because most cannot be mated under laboratory conditions. To overcome this barrier, we sequenced the draft genomes of the ectomycorrhizal sister species
<i>Rhizopogon vinicolor</i>
Smith and Zeller and
<i>R. vesiculosus</i>
Smith and Zeller (Basidiomycota, Boletales)-the first genomes available for Basidiomycota truffles-and characterized gene content and organization surrounding their mating type loci. Both species possess a pair of homeodomain transcription factor homologs at the mating type
<i>A</i>
-locus as well as pheromone receptor and pheromone precursor homologs at the mating type
<i>B</i>
-locus. Comparison of
<i>Rhizopogon</i>
genomes with genomes from Boletales, Agaricales, and Polyporales revealed synteny of the
<i>A</i>
-locus region within Boletales, but several genomic rearrangements across orders. Our findings suggest correlation between gene content at the
<i>B</i>
-locus region and breeding system in Boletales with tetrapolar species possessing more diverse gene content than bipolar species.
<i>Rhizopogon vinicolor</i>
possesses a greater number of
<i>B</i>
-locus pheromone receptor and precursor genes than
<i>R. vesiculosus</i>
, as well as a pair of isoprenyl cysteine methyltransferase genes flanking the
<i>B</i>
-locus compared to a single copy in
<i>R. vesiculosus</i>
Examination of dikaryotic single nucleotide polymorphisms within genomes revealed greater heterozygosity in
<i>R. vinicolor</i>
, consistent with increased rates of outcrossing. Both species possess the components of a heterothallic breeding system with
<i>R. vinicolor</i>
possessing a
<i>B</i>
-locus region structure consistent with tetrapolar Boletales and
<i>R. vesiculosus</i>
possessing a
<i>B</i>
-locus region structure intermediate between bipolar and tetrapolar Boletales.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28450370</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>03</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2160-1836</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2017</Year>
<Month>06</Month>
<Day>07</Day>
</PubDate>
</JournalIssue>
<Title>G3 (Bethesda, Md.)</Title>
<ISOAbbreviation>G3 (Bethesda)</ISOAbbreviation>
</Journal>
<ArticleTitle>Comparative Genomics of the Ectomycorrhizal Sister Species
<i>Rhizopogon vinicolor</i>
and
<i>Rhizopogon vesiculosus</i>
(Basidiomycota: Boletales) Reveals a Divergence of the Mating Type
<i>B</i>
Locus.</ArticleTitle>
<Pagination>
<MedlinePgn>1775-1789</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1534/g3.117.039396</ELocationID>
<Abstract>
<AbstractText>Divergence of breeding system plays an important role in fungal speciation. Ectomycorrhizal fungi, however, pose a challenge for the study of reproductive biology because most cannot be mated under laboratory conditions. To overcome this barrier, we sequenced the draft genomes of the ectomycorrhizal sister species
<i>Rhizopogon vinicolor</i>
Smith and Zeller and
<i>R. vesiculosus</i>
Smith and Zeller (Basidiomycota, Boletales)-the first genomes available for Basidiomycota truffles-and characterized gene content and organization surrounding their mating type loci. Both species possess a pair of homeodomain transcription factor homologs at the mating type
<i>A</i>
-locus as well as pheromone receptor and pheromone precursor homologs at the mating type
<i>B</i>
-locus. Comparison of
<i>Rhizopogon</i>
genomes with genomes from Boletales, Agaricales, and Polyporales revealed synteny of the
<i>A</i>
-locus region within Boletales, but several genomic rearrangements across orders. Our findings suggest correlation between gene content at the
<i>B</i>
-locus region and breeding system in Boletales with tetrapolar species possessing more diverse gene content than bipolar species.
<i>Rhizopogon vinicolor</i>
possesses a greater number of
<i>B</i>
-locus pheromone receptor and precursor genes than
<i>R. vesiculosus</i>
, as well as a pair of isoprenyl cysteine methyltransferase genes flanking the
<i>B</i>
-locus compared to a single copy in
<i>R. vesiculosus</i>
Examination of dikaryotic single nucleotide polymorphisms within genomes revealed greater heterozygosity in
<i>R. vinicolor</i>
, consistent with increased rates of outcrossing. Both species possess the components of a heterothallic breeding system with
<i>R. vinicolor</i>
possessing a
<i>B</i>
-locus region structure consistent with tetrapolar Boletales and
<i>R. vesiculosus</i>
possessing a
<i>B</i>
-locus region structure intermediate between bipolar and tetrapolar Boletales.</AbstractText>
<CopyrightInformation>Copyright © 2017 Mujic et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Mujic</LastName>
<ForeName>Alija Bajro</ForeName>
<Initials>AB</Initials>
<AffiliationInfo>
<Affiliation>Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331 amujic@gmail.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kuo</LastName>
<ForeName>Alan</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Joint Genome Institute, United States Department of Energy, Walnut Creek, California 95458.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tritt</LastName>
<ForeName>Andrew</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Joint Genome Institute, United States Department of Energy, Walnut Creek, California 95458.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lipzen</LastName>
<ForeName>Anna</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Joint Genome Institute, United States Department of Energy, Walnut Creek, California 95458.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Cindy</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Joint Genome Institute, United States Department of Energy, Walnut Creek, California 95458.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Johnson</LastName>
<ForeName>Jenifer</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Joint Genome Institute, United States Department of Energy, Walnut Creek, California 95458.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sharma</LastName>
<ForeName>Aditi</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Joint Genome Institute, United States Department of Energy, Walnut Creek, California 95458.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Barry</LastName>
<ForeName>Kerrie</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Joint Genome Institute, United States Department of Energy, Walnut Creek, California 95458.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Grigoriev</LastName>
<ForeName>Igor V</ForeName>
<Initials>IV</Initials>
<AffiliationInfo>
<Affiliation>Joint Genome Institute, United States Department of Energy, Walnut Creek, California 95458.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Spatafora</LastName>
<ForeName>Joseph W</ForeName>
<Initials>JW</Initials>
<AffiliationInfo>
<Affiliation>Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>06</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>G3 (Bethesda)</MedlineTA>
<NlmUniqueID>101566598</NlmUniqueID>
<ISSNLinking>2160-1836</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002874" MajorTopicYN="N">Chromosome Mapping</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019295" MajorTopicYN="N">Computational Biology</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049770" MajorTopicYN="Y">Genes, Mating Type, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016681" MajorTopicYN="Y">Genome, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055106" MajorTopicYN="N">Genome-Wide Association Study</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D023281" MajorTopicYN="Y">Genomics</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059014" MajorTopicYN="N">High-Throughput Nucleotide Sequencing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020641" MajorTopicYN="N">Polymorphism, Single Nucleotide</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040641" MajorTopicYN="N">Quantitative Trait Loci</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019655" MajorTopicYN="N">Quantitative Trait, Heritable</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D026801" MajorTopicYN="N">Synteny</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Boletales</Keyword>
<Keyword MajorTopicYN="Y">Genetics of Sex</Keyword>
<Keyword MajorTopicYN="Y">ectomycorrhizae</Keyword>
<Keyword MajorTopicYN="Y">fungal mating pheromone</Keyword>
<Keyword MajorTopicYN="Y">isoprenylcysteine carboxyl methyltransferase</Keyword>
<Keyword MajorTopicYN="Y">truffle</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>4</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>3</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>4</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28450370</ArticleId>
<ArticleId IdType="pii">g3.117.039396</ArticleId>
<ArticleId IdType="doi">10.1534/g3.117.039396</ArticleId>
<ArticleId IdType="pmc">PMC5473757</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9172-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10430915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2000 Mar;154(3):1115-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10757757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Feb 16;291(5507):1304-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11181995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2001 Jul;17(7):393-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11418220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Biol. 2001 Apr;50(2):215-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12116929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Oct 4;298(5591):129-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12364791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2004 Mar;41(3):381-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14761798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Mar 19;32(5):1792-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15034147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 May 11;101(19):7329-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15123810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2004 Aug;41(8):813-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15219565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2004 Jul;14(7):1394-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15231754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2005 Jul;170(3):1105-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15879506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2005 Jul;14(8):2259-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15969712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2006 Mar;172(3):1877-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16461425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2006 Mar-Apr;98(2):233-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16894968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2006 Nov 1;22(21):2688-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16928733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1975 Jun;80(2):311-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17248683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 May 1;23(9):1061-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17332020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2006 Nov-Dec;98(6):917-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17486968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2006 Nov-Dec;98(6):937-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17486970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2006 Nov-Dec;98(6):971-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17486973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Jan;18(1):188-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18025269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2008 Mar 1;24(5):637-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18218656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2008 Apr;18(4):205-210</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18320240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Mar 6;452(7183):88-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18322534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 May;18(5):821-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18349386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;180(2):329-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18557817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Aug 15;25(16):2078-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19505943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Jan;185(2):543-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19878460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):11889-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20547848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2010 Sep;28(9):957-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20622885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010 Nov 24;11:663</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21106091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1513-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21187386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Jun;190(4):818-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21401614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2011 May 15;29(7):644-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21572440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Aug 5;333(6043):762-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21764756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(7):e22249</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21799803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(9):e25126</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21949867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2012 Mar;22(3):568-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22300766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2012 Mar 04;9(4):357-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22388286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Evol Biol. 2012 Jun;25(6):1020-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22515640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Jun 29;336(6089):1715-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22745431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2012 Sep;76(3):626-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22933563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2012 Dec;21(24):6163-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23094975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2013 Jan-Feb;105(1):1-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23099518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2013 Feb;3(2):145-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23390592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2013 Jul-Aug;105(4):814-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23709483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2013 Dec;111(6):445-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23838688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2013 Nov-Dec;105(6):1374-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23928418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2013 Dec 1;531(2):270-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24029079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jan;42(Database issue):D699-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24297253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2014 Nov;72:82-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24853079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2015 Jun;114:18-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25682509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2015 Apr;47(4):410-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25706625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2015 Jun;24(11):2747-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25728665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Feb;209(3):1174-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26391726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2000 Dec;156(6):590-605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29592543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Rev. 1995 Sep;59(3):406-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7565412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):7085-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7913746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 1998 Mar;62(1):55-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9529887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1998 Mar;148(3):1081-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9539426</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C94 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000C94 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:28450370
   |texte=   Comparative Genomics of the Ectomycorrhizal Sister Species Rhizopogon vinicolor and Rhizopogon vesiculosus (Basidiomycota: Boletales) Reveals a Divergence of the Mating Type B Locus.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:28450370" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020