Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Terrestrially derived glomalin-related soil protein quality as a potential ecological indicator in a peri-urban watershed.

Identifieur interne : 000C43 ( Main/Corpus ); précédent : 000C42; suivant : 000C44

Terrestrially derived glomalin-related soil protein quality as a potential ecological indicator in a peri-urban watershed.

Auteurs : Xueyan Sui ; Zhipeng Wu ; Chen Lin ; Shenglu Zhou

Source :

RBID : pubmed:28589455

English descriptors

Abstract

Glomalin, which sequesters substantial amounts of carbon, plays a critical role in sustaining terrestrial biome functions and contributes to the fate of many pollutants from terrestrial to aquatic ecosystems. Despite having focused on the amount of glomalin produced, very few attempts have been made to understand how landscapes and environmental conditions influence glomalin composition and characteristics. This study focused on glomalin-related soil protein (GRSP) exported as storm runoff including eroded sediment and water that was collected before flowing to surface waters in a peri-urban watershed. GRSP characteristics were assessed by Bradford protein analysis, fluorescence spectroscopy combined with parallel factor analysis (PARAFAC), and the determination of aromaticity based on the specific ultraviolet absorption value (280 nm) and molecular weight. General linear models (GLMs) was established by integrating microbial activity, land cover, water temperature, precipitation, and other solution chemical properties to explain the variations in GRSP characteristics. Results showed that a higher GRSP concentration in agricultural reference sites was produced in the form of specific materials with low molecular weight and aromaticity, as well as high percentage of C1 and C5 components which indicate microbial-processed sources, relative to urbanized and forested sites. Compared with forested land, urbanized land clearly produced runoff GRSP with low molecular weight and aromaticity, as well as more degradation of humic-like materials (C3 component). The highest GLM explaining 89% of the variables, including significant variables (p < 0.05) such as microbial activity, water temperature, and water conductivity, was observed for GRSP characteristics. Therefore, changes in eroded soil GRSP quality can serve as an indicator for improving watershed management and thus protecting aquatic ecosystems.

DOI: 10.1007/s10661-017-6012-5
PubMed: 28589455

Links to Exploration step

pubmed:28589455

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Terrestrially derived glomalin-related soil protein quality as a potential ecological indicator in a peri-urban watershed.</title>
<author>
<name sortKey="Sui, Xueyan" sort="Sui, Xueyan" uniqKey="Sui X" first="Xueyan" last="Sui">Xueyan Sui</name>
<affiliation>
<nlm:affiliation>School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, 210046, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wu, Zhipeng" sort="Wu, Zhipeng" uniqKey="Wu Z" first="Zhipeng" last="Wu">Zhipeng Wu</name>
<affiliation>
<nlm:affiliation>School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, 210046, China. dg1327035@smail.nju.edu.cn.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lin, Chen" sort="Lin, Chen" uniqKey="Lin C" first="Chen" last="Lin">Chen Lin</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Watershed Geographic Sciences, Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Shenglu" sort="Zhou, Shenglu" uniqKey="Zhou S" first="Shenglu" last="Zhou">Shenglu Zhou</name>
<affiliation>
<nlm:affiliation>School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, 210046, China. zhousl@nju.edu.cn.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28589455</idno>
<idno type="pmid">28589455</idno>
<idno type="doi">10.1007/s10661-017-6012-5</idno>
<idno type="wicri:Area/Main/Corpus">000C43</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000C43</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Terrestrially derived glomalin-related soil protein quality as a potential ecological indicator in a peri-urban watershed.</title>
<author>
<name sortKey="Sui, Xueyan" sort="Sui, Xueyan" uniqKey="Sui X" first="Xueyan" last="Sui">Xueyan Sui</name>
<affiliation>
<nlm:affiliation>School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, 210046, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wu, Zhipeng" sort="Wu, Zhipeng" uniqKey="Wu Z" first="Zhipeng" last="Wu">Zhipeng Wu</name>
<affiliation>
<nlm:affiliation>School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, 210046, China. dg1327035@smail.nju.edu.cn.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lin, Chen" sort="Lin, Chen" uniqKey="Lin C" first="Chen" last="Lin">Chen Lin</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Watershed Geographic Sciences, Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Shenglu" sort="Zhou, Shenglu" uniqKey="Zhou S" first="Shenglu" last="Zhou">Shenglu Zhou</name>
<affiliation>
<nlm:affiliation>School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, 210046, China. zhousl@nju.edu.cn.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Environmental monitoring and assessment</title>
<idno type="eISSN">1573-2959</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Ecosystem (MeSH)</term>
<term>Environmental Monitoring (methods)</term>
<term>Forests (MeSH)</term>
<term>Fungal Proteins (analysis)</term>
<term>Glycoproteins (analysis)</term>
<term>Soil (chemistry)</term>
<term>Soil Microbiology (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Fungal Proteins</term>
<term>Glycoproteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Soil</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Environmental Monitoring</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Ecosystem</term>
<term>Forests</term>
<term>Soil Microbiology</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Glomalin, which sequesters substantial amounts of carbon, plays a critical role in sustaining terrestrial biome functions and contributes to the fate of many pollutants from terrestrial to aquatic ecosystems. Despite having focused on the amount of glomalin produced, very few attempts have been made to understand how landscapes and environmental conditions influence glomalin composition and characteristics. This study focused on glomalin-related soil protein (GRSP) exported as storm runoff including eroded sediment and water that was collected before flowing to surface waters in a peri-urban watershed. GRSP characteristics were assessed by Bradford protein analysis, fluorescence spectroscopy combined with parallel factor analysis (PARAFAC), and the determination of aromaticity based on the specific ultraviolet absorption value (280 nm) and molecular weight. General linear models (GLMs) was established by integrating microbial activity, land cover, water temperature, precipitation, and other solution chemical properties to explain the variations in GRSP characteristics. Results showed that a higher GRSP concentration in agricultural reference sites was produced in the form of specific materials with low molecular weight and aromaticity, as well as high percentage of C1 and C5 components which indicate microbial-processed sources, relative to urbanized and forested sites. Compared with forested land, urbanized land clearly produced runoff GRSP with low molecular weight and aromaticity, as well as more degradation of humic-like materials (C3 component). The highest GLM explaining 89% of the variables, including significant variables (p < 0.05) such as microbial activity, water temperature, and water conductivity, was observed for GRSP characteristics. Therefore, changes in eroded soil GRSP quality can serve as an indicator for improving watershed management and thus protecting aquatic ecosystems.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28589455</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>06</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1573-2959</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>189</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2017</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Environmental monitoring and assessment</Title>
<ISOAbbreviation>Environ Monit Assess</ISOAbbreviation>
</Journal>
<ArticleTitle>Terrestrially derived glomalin-related soil protein quality as a potential ecological indicator in a peri-urban watershed.</ArticleTitle>
<Pagination>
<MedlinePgn>315</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s10661-017-6012-5</ELocationID>
<Abstract>
<AbstractText>Glomalin, which sequesters substantial amounts of carbon, plays a critical role in sustaining terrestrial biome functions and contributes to the fate of many pollutants from terrestrial to aquatic ecosystems. Despite having focused on the amount of glomalin produced, very few attempts have been made to understand how landscapes and environmental conditions influence glomalin composition and characteristics. This study focused on glomalin-related soil protein (GRSP) exported as storm runoff including eroded sediment and water that was collected before flowing to surface waters in a peri-urban watershed. GRSP characteristics were assessed by Bradford protein analysis, fluorescence spectroscopy combined with parallel factor analysis (PARAFAC), and the determination of aromaticity based on the specific ultraviolet absorption value (280 nm) and molecular weight. General linear models (GLMs) was established by integrating microbial activity, land cover, water temperature, precipitation, and other solution chemical properties to explain the variations in GRSP characteristics. Results showed that a higher GRSP concentration in agricultural reference sites was produced in the form of specific materials with low molecular weight and aromaticity, as well as high percentage of C1 and C5 components which indicate microbial-processed sources, relative to urbanized and forested sites. Compared with forested land, urbanized land clearly produced runoff GRSP with low molecular weight and aromaticity, as well as more degradation of humic-like materials (C3 component). The highest GLM explaining 89% of the variables, including significant variables (p < 0.05) such as microbial activity, water temperature, and water conductivity, was observed for GRSP characteristics. Therefore, changes in eroded soil GRSP quality can serve as an indicator for improving watershed management and thus protecting aquatic ecosystems.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sui</LastName>
<ForeName>Xueyan</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, 210046, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Zhipeng</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, 210046, China. dg1327035@smail.nju.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lin</LastName>
<ForeName>Chen</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Watershed Geographic Sciences, Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Shenglu</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, 210046, China. zhousl@nju.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>06</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Environ Monit Assess</MedlineTA>
<NlmUniqueID>8508350</NlmUniqueID>
<ISSNLinking>0167-6369</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006023">Glycoproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C573268">glomalin, Mycorrhizae</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017753" MajorTopicYN="Y">Ecosystem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004784" MajorTopicYN="N">Environmental Monitoring</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D065928" MajorTopicYN="N">Forests</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006023" MajorTopicYN="N">Glycoproteins</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="N">Soil Microbiology</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Environmental factors</Keyword>
<Keyword MajorTopicYN="N">Glomalin-related soil protein quality</Keyword>
<Keyword MajorTopicYN="N">Land cover</Keyword>
<Keyword MajorTopicYN="N">Peri-urban watershed</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>08</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>05</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>6</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>6</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>6</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28589455</ArticleId>
<ArticleId IdType="doi">10.1007/s10661-017-6012-5</ArticleId>
<ArticleId IdType="pii">10.1007/s10661-017-6012-5</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Ecology. 2008 Apr;89(4):1001-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18481525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2014 Sep 15;493:828-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25000578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2003 Dec 15;37(24):5701-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14717183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Int. 2003 Jul;29(4):437-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12705941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2010 Feb;25(2):90-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19758724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2008 Nov 15;406(1-2):154-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18762323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2007 May 15;41(10):3566-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17547179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2006 Sep;64(11):1870-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16530807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2002 Jun 15;36(12):2736-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12099472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Water Res. 2003 Oct;37(17):4295-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12946913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2012 Feb 21;46(4):2006-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22280543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2014 Apr 1;476-477:643-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24503335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Oct 05;478(7367):49-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21979045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2009 Nov;9(21):4970-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19743425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ScientificWorldJournal. 2014;2014:160403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24955385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 1994 Oct 1;28(11):1853-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22175925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2008 Mar 15;392(1):130-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18086489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2014 Jul 15;48(14):7817-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24919113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2009 Apr 15;407(9):3142-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18514260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protoplasma. 2013 Jun;250(3):663-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22990749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2015 Feb 17;49(4):2081-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25594834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2014;48(1):45-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24308690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2006 May 15;361(1-3):249-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16442152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2009 Mar 1;407(6):1967-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19064278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2012 Aug 21;46(16):8628-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22803700</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C43 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000C43 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:28589455
   |texte=   Terrestrially derived glomalin-related soil protein quality as a potential ecological indicator in a peri-urban watershed.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:28589455" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020