Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Ectomycorrhizal fungi reduce the light compensation point and promote carbon fixation of Pinus thunbergii seedlings to adapt to shade environments.

Identifieur interne : 000B57 ( Main/Corpus ); précédent : 000B56; suivant : 000B58

Ectomycorrhizal fungi reduce the light compensation point and promote carbon fixation of Pinus thunbergii seedlings to adapt to shade environments.

Auteurs : Liang Shi ; Jie Wang ; Binhao Liu ; Kazuhide Nara ; Chunlan Lian ; Zhenguo Shen ; Yan Xia ; Yahua Chen

Source :

RBID : pubmed:28840358

English descriptors

Abstract

We examined the effects of three ectomycorrhizal (ECM) symbionts on the growth and photosynthesis capacity of Japanese black pine (Pinus thunbergii) seedlings and estimated physiological and photosynthetic parameters such as the light compensation point (LCP), biomass, and phosphorus (Pi) concentration of P. thunbergii seedlings. Through this investigation, we documented a new role of ectomycorrhizal (ECM) fungi: enhancement of the survival and competitiveness of P. thunbergii seedlings under low-light condition by reducing the LCP of seedlings. At a CO2 concentration of 400 ppm, the LCP of seedlings with ECM inoculations was 40-70 μmol photons m-2 s-1, significantly lower than that of non-mycorrhizal (NM) seedlings (200 μmol photons m-2 s-1). In addition, photosynthetic carbon fixation (Pn) increased with light intensity and CO2 level, and the Pn of ECM seedlings was significantly higher than that of NM seedlings; Pisolithus sp. (Pt)- and Laccaria amethystea (La)-mycorrhizal seedlings had significantly lower Pn than Cenococcum geophilum (Cg)-mycorrhizal seedlings. However, La-mycorrhizal seedlings exhibited the highest fresh weight, relative water content (RWC), and the lowest LCP in the mycorrhizal group. Concomitantly, ECM seedlings showed significantly increased chlorophyll content of needles and higher Pi concentrations compared to NM seedlings. Overall, ECM symbionts promoted growth and photosynthesis while reducing the LCP of P. thunbergii seedlings. These findings indicate that ECM fungi can enhance the survival and competitiveness of host seedlings under low light.

DOI: 10.1007/s00572-017-0795-7
PubMed: 28840358
PubMed Central: PMC5645441

Links to Exploration step

pubmed:28840358

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Ectomycorrhizal fungi reduce the light compensation point and promote carbon fixation of Pinus thunbergii seedlings to adapt to shade environments.</title>
<author>
<name sortKey="Shi, Liang" sort="Shi, Liang" uniqKey="Shi L" first="Liang" last="Shi">Liang Shi</name>
<affiliation>
<nlm:affiliation>College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Jie" sort="Wang, Jie" uniqKey="Wang J" first="Jie" last="Wang">Jie Wang</name>
<affiliation>
<nlm:affiliation>College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liu, Binhao" sort="Liu, Binhao" uniqKey="Liu B" first="Binhao" last="Liu">Binhao Liu</name>
<affiliation>
<nlm:affiliation>College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nara, Kazuhide" sort="Nara, Kazuhide" uniqKey="Nara K" first="Kazuhide" last="Nara">Kazuhide Nara</name>
<affiliation>
<nlm:affiliation>Department of Natural Environmental Studies, Graduate School of Frontier Science, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8563, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lian, Chunlan" sort="Lian, Chunlan" uniqKey="Lian C" first="Chunlan" last="Lian">Chunlan Lian</name>
<affiliation>
<nlm:affiliation>Asian Natural Environmental Science Center, The University of Tokyo, 1-1-8 Midoricho, Nishitokyo, Tokyo, 188-0002, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shen, Zhenguo" sort="Shen, Zhenguo" uniqKey="Shen Z" first="Zhenguo" last="Shen">Zhenguo Shen</name>
<affiliation>
<nlm:affiliation>College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Xia, Yan" sort="Xia, Yan" uniqKey="Xia Y" first="Yan" last="Xia">Yan Xia</name>
<affiliation>
<nlm:affiliation>College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China. yxia@njau.edu.cn.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Yahua" sort="Chen, Yahua" uniqKey="Chen Y" first="Yahua" last="Chen">Yahua Chen</name>
<affiliation>
<nlm:affiliation>College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China. yahuachen@njau.edu.cn.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28840358</idno>
<idno type="pmid">28840358</idno>
<idno type="doi">10.1007/s00572-017-0795-7</idno>
<idno type="pmc">PMC5645441</idno>
<idno type="wicri:Area/Main/Corpus">000B57</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000B57</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Ectomycorrhizal fungi reduce the light compensation point and promote carbon fixation of Pinus thunbergii seedlings to adapt to shade environments.</title>
<author>
<name sortKey="Shi, Liang" sort="Shi, Liang" uniqKey="Shi L" first="Liang" last="Shi">Liang Shi</name>
<affiliation>
<nlm:affiliation>College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Jie" sort="Wang, Jie" uniqKey="Wang J" first="Jie" last="Wang">Jie Wang</name>
<affiliation>
<nlm:affiliation>College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liu, Binhao" sort="Liu, Binhao" uniqKey="Liu B" first="Binhao" last="Liu">Binhao Liu</name>
<affiliation>
<nlm:affiliation>College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nara, Kazuhide" sort="Nara, Kazuhide" uniqKey="Nara K" first="Kazuhide" last="Nara">Kazuhide Nara</name>
<affiliation>
<nlm:affiliation>Department of Natural Environmental Studies, Graduate School of Frontier Science, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8563, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lian, Chunlan" sort="Lian, Chunlan" uniqKey="Lian C" first="Chunlan" last="Lian">Chunlan Lian</name>
<affiliation>
<nlm:affiliation>Asian Natural Environmental Science Center, The University of Tokyo, 1-1-8 Midoricho, Nishitokyo, Tokyo, 188-0002, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shen, Zhenguo" sort="Shen, Zhenguo" uniqKey="Shen Z" first="Zhenguo" last="Shen">Zhenguo Shen</name>
<affiliation>
<nlm:affiliation>College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Xia, Yan" sort="Xia, Yan" uniqKey="Xia Y" first="Yan" last="Xia">Yan Xia</name>
<affiliation>
<nlm:affiliation>College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China. yxia@njau.edu.cn.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Yahua" sort="Chen, Yahua" uniqKey="Chen Y" first="Yahua" last="Chen">Yahua Chen</name>
<affiliation>
<nlm:affiliation>College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China. yahuachen@njau.edu.cn.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Mycorrhiza</title>
<idno type="eISSN">1432-1890</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptation, Physiological (MeSH)</term>
<term>Basidiomycota (physiology)</term>
<term>Carbon Cycle (MeSH)</term>
<term>Environment (MeSH)</term>
<term>Mycorrhizae (physiology)</term>
<term>Photosynthesis (MeSH)</term>
<term>Pinus (growth & development)</term>
<term>Pinus (microbiology)</term>
<term>Pinus (physiology)</term>
<term>Seedlings (growth & development)</term>
<term>Seedlings (microbiology)</term>
<term>Seedlings (physiology)</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Pinus</term>
<term>Seedlings</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Pinus</term>
<term>Seedlings</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Basidiomycota</term>
<term>Mycorrhizae</term>
<term>Pinus</term>
<term>Seedlings</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adaptation, Physiological</term>
<term>Carbon Cycle</term>
<term>Environment</term>
<term>Photosynthesis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We examined the effects of three ectomycorrhizal (ECM) symbionts on the growth and photosynthesis capacity of Japanese black pine (Pinus thunbergii) seedlings and estimated physiological and photosynthetic parameters such as the light compensation point (LCP), biomass, and phosphorus (Pi) concentration of P. thunbergii seedlings. Through this investigation, we documented a new role of ectomycorrhizal (ECM) fungi: enhancement of the survival and competitiveness of P. thunbergii seedlings under low-light condition by reducing the LCP of seedlings. At a CO
<sub>2</sub>
concentration of 400 ppm, the LCP of seedlings with ECM inoculations was 40-70 μmol photons m
<sup>-2</sup>
 s
<sup>-1</sup>
, significantly lower than that of non-mycorrhizal (NM) seedlings (200 μmol photons m
<sup>-2</sup>
 s
<sup>-1</sup>
). In addition, photosynthetic carbon fixation (Pn) increased with light intensity and CO
<sub>2</sub>
level, and the Pn of ECM seedlings was significantly higher than that of NM seedlings; Pisolithus sp. (Pt)- and Laccaria amethystea (La)-mycorrhizal seedlings had significantly lower Pn than Cenococcum geophilum (Cg)-mycorrhizal seedlings. However, La-mycorrhizal seedlings exhibited the highest fresh weight, relative water content (RWC), and the lowest LCP in the mycorrhizal group. Concomitantly, ECM seedlings showed significantly increased chlorophyll content of needles and higher Pi concentrations compared to NM seedlings. Overall, ECM symbionts promoted growth and photosynthesis while reducing the LCP of P. thunbergii seedlings. These findings indicate that ECM fungi can enhance the survival and competitiveness of host seedlings under low light.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28840358</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>05</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1890</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>27</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2017</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Mycorrhiza</Title>
<ISOAbbreviation>Mycorrhiza</ISOAbbreviation>
</Journal>
<ArticleTitle>Ectomycorrhizal fungi reduce the light compensation point and promote carbon fixation of Pinus thunbergii seedlings to adapt to shade environments.</ArticleTitle>
<Pagination>
<MedlinePgn>823-830</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00572-017-0795-7</ELocationID>
<Abstract>
<AbstractText>We examined the effects of three ectomycorrhizal (ECM) symbionts on the growth and photosynthesis capacity of Japanese black pine (Pinus thunbergii) seedlings and estimated physiological and photosynthetic parameters such as the light compensation point (LCP), biomass, and phosphorus (Pi) concentration of P. thunbergii seedlings. Through this investigation, we documented a new role of ectomycorrhizal (ECM) fungi: enhancement of the survival and competitiveness of P. thunbergii seedlings under low-light condition by reducing the LCP of seedlings. At a CO
<sub>2</sub>
concentration of 400 ppm, the LCP of seedlings with ECM inoculations was 40-70 μmol photons m
<sup>-2</sup>
 s
<sup>-1</sup>
, significantly lower than that of non-mycorrhizal (NM) seedlings (200 μmol photons m
<sup>-2</sup>
 s
<sup>-1</sup>
). In addition, photosynthetic carbon fixation (Pn) increased with light intensity and CO
<sub>2</sub>
level, and the Pn of ECM seedlings was significantly higher than that of NM seedlings; Pisolithus sp. (Pt)- and Laccaria amethystea (La)-mycorrhizal seedlings had significantly lower Pn than Cenococcum geophilum (Cg)-mycorrhizal seedlings. However, La-mycorrhizal seedlings exhibited the highest fresh weight, relative water content (RWC), and the lowest LCP in the mycorrhizal group. Concomitantly, ECM seedlings showed significantly increased chlorophyll content of needles and higher Pi concentrations compared to NM seedlings. Overall, ECM symbionts promoted growth and photosynthesis while reducing the LCP of P. thunbergii seedlings. These findings indicate that ECM fungi can enhance the survival and competitiveness of host seedlings under low light.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Shi</LastName>
<ForeName>Liang</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Jie</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Binhao</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nara</LastName>
<ForeName>Kazuhide</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Natural Environmental Studies, Graduate School of Frontier Science, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8563, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lian</LastName>
<ForeName>Chunlan</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Asian Natural Environmental Science Center, The University of Tokyo, 1-1-8 Midoricho, Nishitokyo, Tokyo, 188-0002, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shen</LastName>
<ForeName>Zhenguo</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xia</LastName>
<ForeName>Yan</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China. yxia@njau.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Yahua</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China. yahuachen@njau.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>08</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Mycorrhiza</MedlineTA>
<NlmUniqueID>100955036</NlmUniqueID>
<ISSNLinking>0940-6360</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000222" MajorTopicYN="Y">Adaptation, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057486" MajorTopicYN="Y">Carbon Cycle</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004777" MajorTopicYN="N">Environment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="Y">Photosynthesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D028223" MajorTopicYN="N">Pinus</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D036226" MajorTopicYN="N">Seedlings</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Ectomycorrhiza</Keyword>
<Keyword MajorTopicYN="N">Japanese black pine</Keyword>
<Keyword MajorTopicYN="N">Light compensation point</Keyword>
<Keyword MajorTopicYN="N">Light limitation</Keyword>
<Keyword MajorTopicYN="N">Photosynthetic rate</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>04</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>08</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>8</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>5</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>8</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28840358</ArticleId>
<ArticleId IdType="doi">10.1007/s00572-017-0795-7</ArticleId>
<ArticleId IdType="pii">10.1007/s00572-017-0795-7</ArticleId>
<ArticleId IdType="pmc">PMC5645441</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Tree Physiol. 2011 Jun;31(6):582-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21602559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2002 Feb;89(2):183-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12099349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;173(2):322-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17204079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2012 Jun;32(6):799-813</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22210530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2011 May;14(5):493-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21395963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1992 Feb;98(2):516-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Environ Sci (China). 2004;16(3):414-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15272714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2016 Jan;26(1):47-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26003665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2001 Jul;52(360):1383-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11457898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2007 Jan;68(1):82-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17078984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2015 Oct;25(7):561-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25720735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2011 Oct;21(7):623-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21416258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 2012 Dec;39(12):10637-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23053961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2006 Sep;8(5):646-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16755463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Apr;198(1):214-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23356503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2003 Apr;13(2):59-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12682827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2016 Jan;18 Suppl 1:22-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26404633</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B57 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000B57 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:28840358
   |texte=   Ectomycorrhizal fungi reduce the light compensation point and promote carbon fixation of Pinus thunbergii seedlings to adapt to shade environments.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:28840358" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020