Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Nitrogen form and mycorrhizal inoculation amount and timing affect flavonol biosynthesis in onion (Allium cepa L.).

Identifieur interne : 000B32 ( Main/Corpus ); précédent : 000B31; suivant : 000B33

Nitrogen form and mycorrhizal inoculation amount and timing affect flavonol biosynthesis in onion (Allium cepa L.).

Auteurs : Mohanna Mollavali ; Henrike Perner ; Sascha Rohn ; Peer Riehle ; Franziska S. Hanschen ; Dietmar Schwarz

Source :

RBID : pubmed:28948352

English descriptors

Abstract

Mycorrhizal symbiosis is known to be the most prevalent form of fungal symbiosis with plants. Although some studies focus on the importance of mycorrhizal symbiosis for enhanced flavonoids in the host plants, a comprehensive understanding of the relationship still is lacking. Therefore, we studied the effects of mycorrhizal inoculation of onions (Allium cepa L.) regarding flavonol concentration and the genes involved in flavonol biosynthesis when different forms of nitrogen were supplied. We hypothesized that mycorrhizal inoculation can act as a biotic stress and might lead to an increase in flavonols and expression of related genes. The three main quercetin compounds [quercetin-3,4'-di-O-β-D-glucoside (QDG), quercetin-4'-O-β-D-glucoside (QMG), and isorhamnetin-4'-O-β-D-glucoside (IMG)] of onion bulbs were identified and analyzed after inoculating with increasing amounts of mycorrhizal inocula at two time points and supplying either predominantly NO3- or NH4+ nitrogen. We also quantified plant dry mass, nutrient element uptake, chalcone synthase (CHS), flavonol synthase (FLS), and phenyl alanine lyase (PAL) gene expression as key enzymes for flavonol biosynthesis. Inoculation with arbuscular mycorrhizal fungi (highest amount) and colonization at late development stages (bulb growth) increased QDG and QMG concentrations if plants were additionally supplied with predominantly NH4+. No differences were observed in the IMG content. RNA accumulation of CHS, FLS, and PAL was affected by the stage of the mycorrhizal symbiosis and the nitrogen form. Accumulation of flavonols was not correlated, however, with either the percentage of myorrhization or the abundance of transcripts of flavonoid biosynthesis genes. We found that in plants at late developmental stages, RNA accumulation as a reflection of a current physiological situation does not necessarily correspond with the content of metabolites that accumulate over a long period. Our findings suggest that nitrogen form can be an important factor determining mycorrhizal development and that both nitrogen form and mycorrhizas interact to influence flavonol biosynthesis.

DOI: 10.1007/s00572-017-0799-3
PubMed: 28948352
PubMed Central: PMC5748431

Links to Exploration step

pubmed:28948352

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Nitrogen form and mycorrhizal inoculation amount and timing affect flavonol biosynthesis in onion (Allium cepa L.).</title>
<author>
<name sortKey="Mollavali, Mohanna" sort="Mollavali, Mohanna" uniqKey="Mollavali M" first="Mohanna" last="Mollavali">Mohanna Mollavali</name>
<affiliation>
<nlm:affiliation>Vegetable Physiology Laboratory, Department of Horticulture, University of Tabriz, Tabriz, Iran.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Leibniz Institute for Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Perner, Henrike" sort="Perner, Henrike" uniqKey="Perner H" first="Henrike" last="Perner">Henrike Perner</name>
<affiliation>
<nlm:affiliation>Leibniz Institute for Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rohn, Sascha" sort="Rohn, Sascha" uniqKey="Rohn S" first="Sascha" last="Rohn">Sascha Rohn</name>
<affiliation>
<nlm:affiliation>Institute of Food Chemistry, Hamburg School of Food Science, University Hamburg, Grindelallee 117, 20146, Hamburg, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Riehle, Peer" sort="Riehle, Peer" uniqKey="Riehle P" first="Peer" last="Riehle">Peer Riehle</name>
<affiliation>
<nlm:affiliation>Institute of Food Chemistry, Hamburg School of Food Science, University Hamburg, Grindelallee 117, 20146, Hamburg, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hanschen, Franziska S" sort="Hanschen, Franziska S" uniqKey="Hanschen F" first="Franziska S" last="Hanschen">Franziska S. Hanschen</name>
<affiliation>
<nlm:affiliation>Leibniz Institute for Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schwarz, Dietmar" sort="Schwarz, Dietmar" uniqKey="Schwarz D" first="Dietmar" last="Schwarz">Dietmar Schwarz</name>
<affiliation>
<nlm:affiliation>Leibniz Institute for Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany. schwarz@igzev.de.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:28948352</idno>
<idno type="pmid">28948352</idno>
<idno type="doi">10.1007/s00572-017-0799-3</idno>
<idno type="pmc">PMC5748431</idno>
<idno type="wicri:Area/Main/Corpus">000B32</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000B32</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Nitrogen form and mycorrhizal inoculation amount and timing affect flavonol biosynthesis in onion (Allium cepa L.).</title>
<author>
<name sortKey="Mollavali, Mohanna" sort="Mollavali, Mohanna" uniqKey="Mollavali M" first="Mohanna" last="Mollavali">Mohanna Mollavali</name>
<affiliation>
<nlm:affiliation>Vegetable Physiology Laboratory, Department of Horticulture, University of Tabriz, Tabriz, Iran.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Leibniz Institute for Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Perner, Henrike" sort="Perner, Henrike" uniqKey="Perner H" first="Henrike" last="Perner">Henrike Perner</name>
<affiliation>
<nlm:affiliation>Leibniz Institute for Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rohn, Sascha" sort="Rohn, Sascha" uniqKey="Rohn S" first="Sascha" last="Rohn">Sascha Rohn</name>
<affiliation>
<nlm:affiliation>Institute of Food Chemistry, Hamburg School of Food Science, University Hamburg, Grindelallee 117, 20146, Hamburg, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Riehle, Peer" sort="Riehle, Peer" uniqKey="Riehle P" first="Peer" last="Riehle">Peer Riehle</name>
<affiliation>
<nlm:affiliation>Institute of Food Chemistry, Hamburg School of Food Science, University Hamburg, Grindelallee 117, 20146, Hamburg, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hanschen, Franziska S" sort="Hanschen, Franziska S" uniqKey="Hanschen F" first="Franziska S" last="Hanschen">Franziska S. Hanschen</name>
<affiliation>
<nlm:affiliation>Leibniz Institute for Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schwarz, Dietmar" sort="Schwarz, Dietmar" uniqKey="Schwarz D" first="Dietmar" last="Schwarz">Dietmar Schwarz</name>
<affiliation>
<nlm:affiliation>Leibniz Institute for Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany. schwarz@igzev.de.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Mycorrhiza</title>
<idno type="eISSN">1432-1890</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acyltransferases (genetics)</term>
<term>Acyltransferases (metabolism)</term>
<term>Flavonols (biosynthesis)</term>
<term>Gene Expression (MeSH)</term>
<term>Mycorrhizae (physiology)</term>
<term>Nitrogen (chemistry)</term>
<term>Nitrogen (metabolism)</term>
<term>Onions (genetics)</term>
<term>Onions (metabolism)</term>
<term>Oxidoreductases (genetics)</term>
<term>Oxidoreductases (metabolism)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Flavonols</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Nitrogen</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Acyltransferases</term>
<term>Oxidoreductases</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Acyltransferases</term>
<term>Nitrogen</term>
<term>Oxidoreductases</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Onions</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Onions</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Mycorrhizal symbiosis is known to be the most prevalent form of fungal symbiosis with plants. Although some studies focus on the importance of mycorrhizal symbiosis for enhanced flavonoids in the host plants, a comprehensive understanding of the relationship still is lacking. Therefore, we studied the effects of mycorrhizal inoculation of onions (Allium cepa L.) regarding flavonol concentration and the genes involved in flavonol biosynthesis when different forms of nitrogen were supplied. We hypothesized that mycorrhizal inoculation can act as a biotic stress and might lead to an increase in flavonols and expression of related genes. The three main quercetin compounds [quercetin-3,4'-di-O-β-D-glucoside (QDG), quercetin-4'-O-β-D-glucoside (QMG), and isorhamnetin-4'-O-β-D-glucoside (IMG)] of onion bulbs were identified and analyzed after inoculating with increasing amounts of mycorrhizal inocula at two time points and supplying either predominantly NO
<sub>3</sub>
<sup>-</sup>
or NH
<sub>4</sub>
<sup>+</sup>
nitrogen. We also quantified plant dry mass, nutrient element uptake, chalcone synthase (CHS), flavonol synthase (FLS), and phenyl alanine lyase (PAL) gene expression as key enzymes for flavonol biosynthesis. Inoculation with arbuscular mycorrhizal fungi (highest amount) and colonization at late development stages (bulb growth) increased QDG and QMG concentrations if plants were additionally supplied with predominantly NH
<sub>4</sub>
<sup>+</sup>
. No differences were observed in the IMG content. RNA accumulation of CHS, FLS, and PAL was affected by the stage of the mycorrhizal symbiosis and the nitrogen form. Accumulation of flavonols was not correlated, however, with either the percentage of myorrhization or the abundance of transcripts of flavonoid biosynthesis genes. We found that in plants at late developmental stages, RNA accumulation as a reflection of a current physiological situation does not necessarily correspond with the content of metabolites that accumulate over a long period. Our findings suggest that nitrogen form can be an important factor determining mycorrhizal development and that both nitrogen form and mycorrhizas interact to influence flavonol biosynthesis.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28948352</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>07</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1890</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>28</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2018</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Mycorrhiza</Title>
<ISOAbbreviation>Mycorrhiza</ISOAbbreviation>
</Journal>
<ArticleTitle>Nitrogen form and mycorrhizal inoculation amount and timing affect flavonol biosynthesis in onion (Allium cepa L.).</ArticleTitle>
<Pagination>
<MedlinePgn>59-70</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00572-017-0799-3</ELocationID>
<Abstract>
<AbstractText>Mycorrhizal symbiosis is known to be the most prevalent form of fungal symbiosis with plants. Although some studies focus on the importance of mycorrhizal symbiosis for enhanced flavonoids in the host plants, a comprehensive understanding of the relationship still is lacking. Therefore, we studied the effects of mycorrhizal inoculation of onions (Allium cepa L.) regarding flavonol concentration and the genes involved in flavonol biosynthesis when different forms of nitrogen were supplied. We hypothesized that mycorrhizal inoculation can act as a biotic stress and might lead to an increase in flavonols and expression of related genes. The three main quercetin compounds [quercetin-3,4'-di-O-β-D-glucoside (QDG), quercetin-4'-O-β-D-glucoside (QMG), and isorhamnetin-4'-O-β-D-glucoside (IMG)] of onion bulbs were identified and analyzed after inoculating with increasing amounts of mycorrhizal inocula at two time points and supplying either predominantly NO
<sub>3</sub>
<sup>-</sup>
or NH
<sub>4</sub>
<sup>+</sup>
nitrogen. We also quantified plant dry mass, nutrient element uptake, chalcone synthase (CHS), flavonol synthase (FLS), and phenyl alanine lyase (PAL) gene expression as key enzymes for flavonol biosynthesis. Inoculation with arbuscular mycorrhizal fungi (highest amount) and colonization at late development stages (bulb growth) increased QDG and QMG concentrations if plants were additionally supplied with predominantly NH
<sub>4</sub>
<sup>+</sup>
. No differences were observed in the IMG content. RNA accumulation of CHS, FLS, and PAL was affected by the stage of the mycorrhizal symbiosis and the nitrogen form. Accumulation of flavonols was not correlated, however, with either the percentage of myorrhization or the abundance of transcripts of flavonoid biosynthesis genes. We found that in plants at late developmental stages, RNA accumulation as a reflection of a current physiological situation does not necessarily correspond with the content of metabolites that accumulate over a long period. Our findings suggest that nitrogen form can be an important factor determining mycorrhizal development and that both nitrogen form and mycorrhizas interact to influence flavonol biosynthesis.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Mollavali</LastName>
<ForeName>Mohanna</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Vegetable Physiology Laboratory, Department of Horticulture, University of Tabriz, Tabriz, Iran.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Leibniz Institute for Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Perner</LastName>
<ForeName>Henrike</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Leibniz Institute for Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rohn</LastName>
<ForeName>Sascha</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Institute of Food Chemistry, Hamburg School of Food Science, University Hamburg, Grindelallee 117, 20146, Hamburg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Riehle</LastName>
<ForeName>Peer</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Institute of Food Chemistry, Hamburg School of Food Science, University Hamburg, Grindelallee 117, 20146, Hamburg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hanschen</LastName>
<ForeName>Franziska S</ForeName>
<Initials>FS</Initials>
<AffiliationInfo>
<Affiliation>Leibniz Institute for Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schwarz</LastName>
<ForeName>Dietmar</ForeName>
<Initials>D</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-7742-7227</Identifier>
<AffiliationInfo>
<Affiliation>Leibniz Institute for Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany. schwarz@igzev.de.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>09</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Mycorrhiza</MedlineTA>
<NlmUniqueID>100955036</NlmUniqueID>
<ISSNLinking>0940-6360</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D044948">Flavonols</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D010088">Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.3.-</RegistryNumber>
<NameOfSubstance UI="C085313">flavonol synthase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.3.-</RegistryNumber>
<NameOfSubstance UI="D000217">Acyltransferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.3.1.74</RegistryNumber>
<NameOfSubstance UI="C020141">flavanone synthetase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000217" MajorTopicYN="N">Acyltransferases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044948" MajorTopicYN="N">Flavonols</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015870" MajorTopicYN="N">Gene Expression</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019697" MajorTopicYN="N">Onions</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010088" MajorTopicYN="N">Oxidoreductases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Ammonium</Keyword>
<Keyword MajorTopicYN="N">Chalcone synthase</Keyword>
<Keyword MajorTopicYN="N">Flavonol synthase</Keyword>
<Keyword MajorTopicYN="N">Nitrate</Keyword>
<Keyword MajorTopicYN="N">Phenyl alanine lyase</Keyword>
<Keyword MajorTopicYN="N">Quercetin</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>01</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>08</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>9</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>7</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>9</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28948352</ArticleId>
<ArticleId IdType="doi">10.1007/s00572-017-0799-3</ArticleId>
<ArticleId IdType="pii">10.1007/s00572-017-0799-3</ArticleId>
<ArticleId IdType="pmc">PMC5748431</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Cell Environ. 2009 Jun;32(6):628-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18811732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Feb;128(2):472-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11842151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2012;13(1):393-408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22312260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2008 Sep 24;56(18):8685-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18712879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2010 Jan;231(2):425-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19937342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2011 Nov 1;168(16):1943-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21807439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 1998 Oct;153(3-4):316-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11543585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytother Res. 2002 Nov;16(7):603-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12410539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2005 Nov;7(6):677-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16388471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2016 Jan 13;64(1):71-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26694086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 May;63(9):3429-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22213816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Sci Food Agric. 2016 Jan 30;96(2):392-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25623939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2008 Sep 29;165(14):1491-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18242769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2007 Dec 12;55(25):10067-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17997520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Integr Plant Biol. 2010 Jan;52(1):98-111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20074144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Sep;136(1):2483-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15375205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2010 Apr;5(4):359-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20400851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Molecules. 2007 Jul 05;12(7):1290-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17909485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2001 Aug;11(3):145-150</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24595434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2007 Apr;225(5):1245-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17053893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Sep 01;6:673</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26388881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2008 May 28;56(10):3538-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18457399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochem Rev. 2011 Sep;10(3):397-412</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21909286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Jun;166(3):981-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15869657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Dec;168(3):677-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16313649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2015 Apr;233:174-185</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25711825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1996 Feb;110(2):675-688</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12226210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2004 Jul;65(13):1925-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15279999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 Aug;108(4):1449-1454</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12228554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Sci Food Agric. 2015 Aug 15;95(10):2095-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25243392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hazard Mater. 2009 Mar 15;162(2-3):1081-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18603363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2013 Jul 17;14(7):14950-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23867610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1992 Mar;58(3):821-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16348673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2011 Apr 27;59(8):4198-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21395334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Aug 26;6:657</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26379685</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B32 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000B32 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:28948352
   |texte=   Nitrogen form and mycorrhizal inoculation amount and timing affect flavonol biosynthesis in onion (Allium cepa L.).
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:28948352" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020