Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Arbuscular common mycorrhizal networks mediate intra- and interspecific interactions of two prairie grasses.

Identifieur interne : 000B23 ( Main/Corpus ); précédent : 000B22; suivant : 000B24

Arbuscular common mycorrhizal networks mediate intra- and interspecific interactions of two prairie grasses.

Auteurs : Joanna Weremijewicz ; Leonel Da Silveira Lobo O'Reilly Sternberg ; David P. Janos

Source :

RBID : pubmed:28986642

English descriptors

Abstract

Arbuscular mycorrhizal fungi form extensive common mycorrhizal networks (CMNs) that may interconnect neighboring root systems of the same or different plant species, thereby potentially influencing the distribution of limiting mineral nutrients among plants. We examined how CMNs affected intra- and interspecific interactions within and between populations of Andropogon gerardii, a highly mycorrhiza dependent, dominant prairie grass and Elymus canadensis, a moderately dependent, subordinate prairie species. We grew A. gerardii and E. canadensis alone and intermixed in microcosms, with individual root systems isolated, but either interconnected by CMNs or with CMNs severed weekly. CMNs, which provided access to a large soil volume, improved survival of both A. gerardii and E. canadensis, but intensified intraspecific competition for A. gerardii. When mixed with E. canadensis, A. gerardii overyielded aboveground biomass in the presence of intact CMNs but not when CMNs were severed, suggesting that A. gerardii with intact CMNs most benefitted from weaker interspecific than intraspecific interactions across CMNs. CMNs improved manganese uptake by both species, with the largest plants receiving the most manganese. Enhanced growth in consequence of improved mineral nutrition led to large E. canadensis in intact CMNs experiencing water-stress, as indicated by 13C isotope abundance. Our findings suggest that in prairie plant communities, CMNs may influence mineral nutrient distribution, water relations, within-species size hierarchies, and between-species interactions.

DOI: 10.1007/s00572-017-0801-0
PubMed: 28986642

Links to Exploration step

pubmed:28986642

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Arbuscular common mycorrhizal networks mediate intra- and interspecific interactions of two prairie grasses.</title>
<author>
<name sortKey="Weremijewicz, Joanna" sort="Weremijewicz, Joanna" uniqKey="Weremijewicz J" first="Joanna" last="Weremijewicz">Joanna Weremijewicz</name>
<affiliation>
<nlm:affiliation>Department of Biology, University of Miami, P.O. Box 249118, Coral Gables, FL, 33124-0421, USA. JWeremi@gmail.com.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Biology, North Central College, 30 North Brainard St., Naperville, IL, 60540, USA. JWeremi@gmail.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Da Silveira Lobo O Reilly Sternberg, Leonel" sort="Da Silveira Lobo O Reilly Sternberg, Leonel" uniqKey="Da Silveira Lobo O Reilly Sternberg L" first="Leonel" last="Da Silveira Lobo O'Reilly Sternberg">Leonel Da Silveira Lobo O'Reilly Sternberg</name>
<affiliation>
<nlm:affiliation>Department of Biology, University of Miami, P.O. Box 249118, Coral Gables, FL, 33124-0421, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Janos, David P" sort="Janos, David P" uniqKey="Janos D" first="David P" last="Janos">David P. Janos</name>
<affiliation>
<nlm:affiliation>Department of Biology, University of Miami, P.O. Box 249118, Coral Gables, FL, 33124-0421, USA.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:28986642</idno>
<idno type="pmid">28986642</idno>
<idno type="doi">10.1007/s00572-017-0801-0</idno>
<idno type="wicri:Area/Main/Corpus">000B23</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000B23</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Arbuscular common mycorrhizal networks mediate intra- and interspecific interactions of two prairie grasses.</title>
<author>
<name sortKey="Weremijewicz, Joanna" sort="Weremijewicz, Joanna" uniqKey="Weremijewicz J" first="Joanna" last="Weremijewicz">Joanna Weremijewicz</name>
<affiliation>
<nlm:affiliation>Department of Biology, University of Miami, P.O. Box 249118, Coral Gables, FL, 33124-0421, USA. JWeremi@gmail.com.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Biology, North Central College, 30 North Brainard St., Naperville, IL, 60540, USA. JWeremi@gmail.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Da Silveira Lobo O Reilly Sternberg, Leonel" sort="Da Silveira Lobo O Reilly Sternberg, Leonel" uniqKey="Da Silveira Lobo O Reilly Sternberg L" first="Leonel" last="Da Silveira Lobo O'Reilly Sternberg">Leonel Da Silveira Lobo O'Reilly Sternberg</name>
<affiliation>
<nlm:affiliation>Department of Biology, University of Miami, P.O. Box 249118, Coral Gables, FL, 33124-0421, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Janos, David P" sort="Janos, David P" uniqKey="Janos D" first="David P" last="Janos">David P. Janos</name>
<affiliation>
<nlm:affiliation>Department of Biology, University of Miami, P.O. Box 249118, Coral Gables, FL, 33124-0421, USA.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Mycorrhiza</title>
<idno type="eISSN">1432-1890</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Andropogon (growth & development)</term>
<term>Andropogon (microbiology)</term>
<term>Biomass (MeSH)</term>
<term>Elymus (growth & development)</term>
<term>Elymus (microbiology)</term>
<term>Grassland (MeSH)</term>
<term>Mycorrhizae (physiology)</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Andropogon</term>
<term>Elymus</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Andropogon</term>
<term>Elymus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biomass</term>
<term>Grassland</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Arbuscular mycorrhizal fungi form extensive common mycorrhizal networks (CMNs) that may interconnect neighboring root systems of the same or different plant species, thereby potentially influencing the distribution of limiting mineral nutrients among plants. We examined how CMNs affected intra- and interspecific interactions within and between populations of Andropogon gerardii, a highly mycorrhiza dependent, dominant prairie grass and Elymus canadensis, a moderately dependent, subordinate prairie species. We grew A. gerardii and E. canadensis alone and intermixed in microcosms, with individual root systems isolated, but either interconnected by CMNs or with CMNs severed weekly. CMNs, which provided access to a large soil volume, improved survival of both A. gerardii and E. canadensis, but intensified intraspecific competition for A. gerardii. When mixed with E. canadensis, A. gerardii overyielded aboveground biomass in the presence of intact CMNs but not when CMNs were severed, suggesting that A. gerardii with intact CMNs most benefitted from weaker interspecific than intraspecific interactions across CMNs. CMNs improved manganese uptake by both species, with the largest plants receiving the most manganese. Enhanced growth in consequence of improved mineral nutrition led to large E. canadensis in intact CMNs experiencing water-stress, as indicated by
<sup>13</sup>
C isotope abundance. Our findings suggest that in prairie plant communities, CMNs may influence mineral nutrient distribution, water relations, within-species size hierarchies, and between-species interactions.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28986642</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>07</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1890</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>28</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2018</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Mycorrhiza</Title>
<ISOAbbreviation>Mycorrhiza</ISOAbbreviation>
</Journal>
<ArticleTitle>Arbuscular common mycorrhizal networks mediate intra- and interspecific interactions of two prairie grasses.</ArticleTitle>
<Pagination>
<MedlinePgn>71-83</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00572-017-0801-0</ELocationID>
<Abstract>
<AbstractText>Arbuscular mycorrhizal fungi form extensive common mycorrhizal networks (CMNs) that may interconnect neighboring root systems of the same or different plant species, thereby potentially influencing the distribution of limiting mineral nutrients among plants. We examined how CMNs affected intra- and interspecific interactions within and between populations of Andropogon gerardii, a highly mycorrhiza dependent, dominant prairie grass and Elymus canadensis, a moderately dependent, subordinate prairie species. We grew A. gerardii and E. canadensis alone and intermixed in microcosms, with individual root systems isolated, but either interconnected by CMNs or with CMNs severed weekly. CMNs, which provided access to a large soil volume, improved survival of both A. gerardii and E. canadensis, but intensified intraspecific competition for A. gerardii. When mixed with E. canadensis, A. gerardii overyielded aboveground biomass in the presence of intact CMNs but not when CMNs were severed, suggesting that A. gerardii with intact CMNs most benefitted from weaker interspecific than intraspecific interactions across CMNs. CMNs improved manganese uptake by both species, with the largest plants receiving the most manganese. Enhanced growth in consequence of improved mineral nutrition led to large E. canadensis in intact CMNs experiencing water-stress, as indicated by
<sup>13</sup>
C isotope abundance. Our findings suggest that in prairie plant communities, CMNs may influence mineral nutrient distribution, water relations, within-species size hierarchies, and between-species interactions.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Weremijewicz</LastName>
<ForeName>Joanna</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, University of Miami, P.O. Box 249118, Coral Gables, FL, 33124-0421, USA. JWeremi@gmail.com.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Biology, North Central College, 30 North Brainard St., Naperville, IL, 60540, USA. JWeremi@gmail.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>da Silveira Lobo O'Reilly Sternberg</LastName>
<ForeName>Leonel</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, University of Miami, P.O. Box 249118, Coral Gables, FL, 33124-0421, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Janos</LastName>
<ForeName>David P</ForeName>
<Initials>DP</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, University of Miami, P.O. Box 249118, Coral Gables, FL, 33124-0421, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>1401677</GrantID>
<Agency>Directorate for Biological Sciences</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>10</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Mycorrhiza</MedlineTA>
<NlmUniqueID>100955036</NlmUniqueID>
<ISSNLinking>0940-6360</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D031722" MajorTopicYN="N">Andropogon</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="N">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D031749" MajorTopicYN="N">Elymus</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D065948" MajorTopicYN="N">Grassland</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Andropogon gerardii</Keyword>
<Keyword MajorTopicYN="N">Carbon stable isotope</Keyword>
<Keyword MajorTopicYN="N">Common mycorrhizal networks</Keyword>
<Keyword MajorTopicYN="N">Competition</Keyword>
<Keyword MajorTopicYN="N">Elymus canadensis</Keyword>
<Keyword MajorTopicYN="N">Manganese</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>05</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>09</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>10</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>7</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>10</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28986642</ArticleId>
<ArticleId IdType="doi">10.1007/s00572-017-0801-0</ArticleId>
<ArticleId IdType="pii">10.1007/s00572-017-0801-0</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol. 2012 Jun;159(2):789-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22517410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Evol. 2016 May 17;6(12):3977-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27516857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2015 Nov 03;1:15159</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27251530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2010 Apr;72(1):125-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20459516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2007 Mar;17(2):75-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17216499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2010 Aug;25(8):468-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20557974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2010 Nov;74(2):336-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20722732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Oct;212(2):461-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27265515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Apr;198(1):203-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23356215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1996 Oct;108(1):79-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28307736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1994 Sep;99(1-2):21-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28313944</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Aug 12;333(6044):880-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21836016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Rev. 1996 Nov 7;96(7):2927-2950</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11848846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1992 Aug;91(2):281-287</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28313470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Jan;205(1):361-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25243653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1999 Dec;121(4):574-582</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28308367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Jul;203(2):646-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24787049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1982 Sep 3;217(4563):941-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17747956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Oct;200(1):229-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23738787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1984 Mar;61(3):334-336</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28311058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2011 May;76(2):236-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21223336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 1990 Nov;5(11):360-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21232393</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B23 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000B23 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:28986642
   |texte=   Arbuscular common mycorrhizal networks mediate intra- and interspecific interactions of two prairie grasses.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:28986642" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020