Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Changes in the allocation of endogenous strigolactone improve plant biomass production on phosphate-poor soils.

Identifieur interne : 000B01 ( Main/Corpus ); précédent : 000B00; suivant : 000B02

Changes in the allocation of endogenous strigolactone improve plant biomass production on phosphate-poor soils.

Auteurs : Guowei Liu ; Johannes Pfeifer ; Rita De Brito Francisco ; Aurelia Emonet ; Marina Stirnemann ; Christian Gübeli ; Olivier Hutter ; Joëlle Sasse ; Christian Mattheyer ; Ernst Stelzer ; Achim Walter ; Enrico Martinoia ; Lorenzo Borghi

Source :

RBID : pubmed:29083039

English descriptors

Abstract

Strigolactones (SLs) are carotenoid-derived phytohormones shaping plant architecture and inducing the symbiosis with endomycorrhizal fungi. In Petunia hybrida, SL transport within the plant and towards the rhizosphere is driven by the ABCG-class protein PDR1. PDR1 expression is regulated by phytohormones and by the soil phosphate abundance, and thus SL transport integrates plant development with nutrient conditions. We overexpressed PDR1 (PDR1 OE) to investigate whether increased endogenous SL transport is sufficient to improve plant nutrition and productivity. Phosphorus quantification and nondestructive X-ray computed tomography were applied. Morphological and gene expression changes were quantified at cellular and whole tissue levels via time-lapse microscopy and quantitative PCR. PDR1 OE significantly enhanced phosphate uptake and plant biomass production on phosphate-poor soils. PDR1 OE plants showed increased lateral root formation, extended root hair elongation, faster mycorrhization and reduced leaf senescence. PDR1 overexpression allowed considerable SL biosynthesis by releasing SL biosynthetic genes from an SL-dependent negative feedback. The increased endogenous SL transport/biosynthesis in PDR1 OE plants is a powerful tool to improve plant growth on phosphate-poor soils. We propose PDR1 as an as yet unexplored trait to be investigated for crop production. The overexpression of PDR1 is a valuable strategy to investigate SL functions and transport routes.

DOI: 10.1111/nph.14847
PubMed: 29083039
PubMed Central: PMC5765447

Links to Exploration step

pubmed:29083039

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Changes in the allocation of endogenous strigolactone improve plant biomass production on phosphate-poor soils.</title>
<author>
<name sortKey="Liu, Guowei" sort="Liu, Guowei" uniqKey="Liu G" first="Guowei" last="Liu">Guowei Liu</name>
<affiliation>
<nlm:affiliation>Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, Zurich, 8008, Switzerland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pfeifer, Johannes" sort="Pfeifer, Johannes" uniqKey="Pfeifer J" first="Johannes" last="Pfeifer">Johannes Pfeifer</name>
<affiliation>
<nlm:affiliation>Institute of Agricultural Sciences, ETH Zurich, Universitätstrasse 2, Zurich, 8092, Switzerland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="De Brito Francisco, Rita" sort="De Brito Francisco, Rita" uniqKey="De Brito Francisco R" first="Rita" last="De Brito Francisco">Rita De Brito Francisco</name>
<affiliation>
<nlm:affiliation>Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, Zurich, 8008, Switzerland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Emonet, Aurelia" sort="Emonet, Aurelia" uniqKey="Emonet A" first="Aurelia" last="Emonet">Aurelia Emonet</name>
<affiliation>
<nlm:affiliation>Département de Biologie Moléculaire Végétale, Faculté de Biologie et Médecine, Biophore, Lausanne, CH-1015, Switzerland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Stirnemann, Marina" sort="Stirnemann, Marina" uniqKey="Stirnemann M" first="Marina" last="Stirnemann">Marina Stirnemann</name>
<affiliation>
<nlm:affiliation>Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, Zurich, 8008, Switzerland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gubeli, Christian" sort="Gubeli, Christian" uniqKey="Gubeli C" first="Christian" last="Gübeli">Christian Gübeli</name>
<affiliation>
<nlm:affiliation>Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, Zurich, 8008, Switzerland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hutter, Olivier" sort="Hutter, Olivier" uniqKey="Hutter O" first="Olivier" last="Hutter">Olivier Hutter</name>
<affiliation>
<nlm:affiliation>Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, Zurich, 8008, Switzerland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sasse, Joelle" sort="Sasse, Joelle" uniqKey="Sasse J" first="Joëlle" last="Sasse">Joëlle Sasse</name>
<affiliation>
<nlm:affiliation>Carnegie Institution for Science, 1530 P Street NW, Washington, DC, 20005, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mattheyer, Christian" sort="Mattheyer, Christian" uniqKey="Mattheyer C" first="Christian" last="Mattheyer">Christian Mattheyer</name>
<affiliation>
<nlm:affiliation>Goethe-Universität Frankfurt am Main, Theodor-W.-Adorno-Platz 1, Frankfurt am Main, 60323, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Stelzer, Ernst" sort="Stelzer, Ernst" uniqKey="Stelzer E" first="Ernst" last="Stelzer">Ernst Stelzer</name>
<affiliation>
<nlm:affiliation>Goethe-Universität Frankfurt am Main, Theodor-W.-Adorno-Platz 1, Frankfurt am Main, 60323, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Walter, Achim" sort="Walter, Achim" uniqKey="Walter A" first="Achim" last="Walter">Achim Walter</name>
<affiliation>
<nlm:affiliation>Institute of Agricultural Sciences, ETH Zurich, Universitätstrasse 2, Zurich, 8092, Switzerland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Martinoia, Enrico" sort="Martinoia, Enrico" uniqKey="Martinoia E" first="Enrico" last="Martinoia">Enrico Martinoia</name>
<affiliation>
<nlm:affiliation>Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, Zurich, 8008, Switzerland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Borghi, Lorenzo" sort="Borghi, Lorenzo" uniqKey="Borghi L" first="Lorenzo" last="Borghi">Lorenzo Borghi</name>
<affiliation>
<nlm:affiliation>Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, Zurich, 8008, Switzerland.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29083039</idno>
<idno type="pmid">29083039</idno>
<idno type="doi">10.1111/nph.14847</idno>
<idno type="pmc">PMC5765447</idno>
<idno type="wicri:Area/Main/Corpus">000B01</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000B01</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Changes in the allocation of endogenous strigolactone improve plant biomass production on phosphate-poor soils.</title>
<author>
<name sortKey="Liu, Guowei" sort="Liu, Guowei" uniqKey="Liu G" first="Guowei" last="Liu">Guowei Liu</name>
<affiliation>
<nlm:affiliation>Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, Zurich, 8008, Switzerland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pfeifer, Johannes" sort="Pfeifer, Johannes" uniqKey="Pfeifer J" first="Johannes" last="Pfeifer">Johannes Pfeifer</name>
<affiliation>
<nlm:affiliation>Institute of Agricultural Sciences, ETH Zurich, Universitätstrasse 2, Zurich, 8092, Switzerland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="De Brito Francisco, Rita" sort="De Brito Francisco, Rita" uniqKey="De Brito Francisco R" first="Rita" last="De Brito Francisco">Rita De Brito Francisco</name>
<affiliation>
<nlm:affiliation>Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, Zurich, 8008, Switzerland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Emonet, Aurelia" sort="Emonet, Aurelia" uniqKey="Emonet A" first="Aurelia" last="Emonet">Aurelia Emonet</name>
<affiliation>
<nlm:affiliation>Département de Biologie Moléculaire Végétale, Faculté de Biologie et Médecine, Biophore, Lausanne, CH-1015, Switzerland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Stirnemann, Marina" sort="Stirnemann, Marina" uniqKey="Stirnemann M" first="Marina" last="Stirnemann">Marina Stirnemann</name>
<affiliation>
<nlm:affiliation>Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, Zurich, 8008, Switzerland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gubeli, Christian" sort="Gubeli, Christian" uniqKey="Gubeli C" first="Christian" last="Gübeli">Christian Gübeli</name>
<affiliation>
<nlm:affiliation>Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, Zurich, 8008, Switzerland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hutter, Olivier" sort="Hutter, Olivier" uniqKey="Hutter O" first="Olivier" last="Hutter">Olivier Hutter</name>
<affiliation>
<nlm:affiliation>Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, Zurich, 8008, Switzerland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sasse, Joelle" sort="Sasse, Joelle" uniqKey="Sasse J" first="Joëlle" last="Sasse">Joëlle Sasse</name>
<affiliation>
<nlm:affiliation>Carnegie Institution for Science, 1530 P Street NW, Washington, DC, 20005, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mattheyer, Christian" sort="Mattheyer, Christian" uniqKey="Mattheyer C" first="Christian" last="Mattheyer">Christian Mattheyer</name>
<affiliation>
<nlm:affiliation>Goethe-Universität Frankfurt am Main, Theodor-W.-Adorno-Platz 1, Frankfurt am Main, 60323, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Stelzer, Ernst" sort="Stelzer, Ernst" uniqKey="Stelzer E" first="Ernst" last="Stelzer">Ernst Stelzer</name>
<affiliation>
<nlm:affiliation>Goethe-Universität Frankfurt am Main, Theodor-W.-Adorno-Platz 1, Frankfurt am Main, 60323, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Walter, Achim" sort="Walter, Achim" uniqKey="Walter A" first="Achim" last="Walter">Achim Walter</name>
<affiliation>
<nlm:affiliation>Institute of Agricultural Sciences, ETH Zurich, Universitätstrasse 2, Zurich, 8092, Switzerland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Martinoia, Enrico" sort="Martinoia, Enrico" uniqKey="Martinoia E" first="Enrico" last="Martinoia">Enrico Martinoia</name>
<affiliation>
<nlm:affiliation>Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, Zurich, 8008, Switzerland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Borghi, Lorenzo" sort="Borghi, Lorenzo" uniqKey="Borghi L" first="Lorenzo" last="Borghi">Lorenzo Borghi</name>
<affiliation>
<nlm:affiliation>Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, Zurich, 8008, Switzerland.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The New phytologist</title>
<idno type="eISSN">1469-8137</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biomass (MeSH)</term>
<term>Biosynthetic Pathways (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genotype (MeSH)</term>
<term>Indoleacetic Acids (metabolism)</term>
<term>Lactones (metabolism)</term>
<term>Meristem (metabolism)</term>
<term>Models, Biological (MeSH)</term>
<term>Mycorrhizae (physiology)</term>
<term>Petunia (genetics)</term>
<term>Petunia (metabolism)</term>
<term>Phenotype (MeSH)</term>
<term>Phosphates (deficiency)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plant Shoots (anatomy & histology)</term>
<term>Plant Shoots (genetics)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Soil (chemistry)</term>
<term>Up-Regulation (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Soil</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="deficiency" xml:lang="en">
<term>Phosphates</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Indoleacetic Acids</term>
<term>Lactones</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomy & histology" xml:lang="en">
<term>Plant Shoots</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Petunia</term>
<term>Plant Shoots</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Meristem</term>
<term>Petunia</term>
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biomass</term>
<term>Biosynthetic Pathways</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genotype</term>
<term>Models, Biological</term>
<term>Phenotype</term>
<term>Plants, Genetically Modified</term>
<term>Up-Regulation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Strigolactones (SLs) are carotenoid-derived phytohormones shaping plant architecture and inducing the symbiosis with endomycorrhizal fungi. In Petunia hybrida, SL transport within the plant and towards the rhizosphere is driven by the ABCG-class protein PDR1. PDR1 expression is regulated by phytohormones and by the soil phosphate abundance, and thus SL transport integrates plant development with nutrient conditions. We overexpressed PDR1 (PDR1 OE) to investigate whether increased endogenous SL transport is sufficient to improve plant nutrition and productivity. Phosphorus quantification and nondestructive X-ray computed tomography were applied. Morphological and gene expression changes were quantified at cellular and whole tissue levels via time-lapse microscopy and quantitative PCR. PDR1 OE significantly enhanced phosphate uptake and plant biomass production on phosphate-poor soils. PDR1 OE plants showed increased lateral root formation, extended root hair elongation, faster mycorrhization and reduced leaf senescence. PDR1 overexpression allowed considerable SL biosynthesis by releasing SL biosynthetic genes from an SL-dependent negative feedback. The increased endogenous SL transport/biosynthesis in PDR1 OE plants is a powerful tool to improve plant growth on phosphate-poor soils. We propose PDR1 as an as yet unexplored trait to be investigated for crop production. The overexpression of PDR1 is a valuable strategy to investigate SL functions and transport routes.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29083039</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>09</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1469-8137</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>217</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2018</Year>
<Month>01</Month>
</PubDate>
</JournalIssue>
<Title>The New phytologist</Title>
<ISOAbbreviation>New Phytol</ISOAbbreviation>
</Journal>
<ArticleTitle>Changes in the allocation of endogenous strigolactone improve plant biomass production on phosphate-poor soils.</ArticleTitle>
<Pagination>
<MedlinePgn>784-798</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/nph.14847</ELocationID>
<Abstract>
<AbstractText>Strigolactones (SLs) are carotenoid-derived phytohormones shaping plant architecture and inducing the symbiosis with endomycorrhizal fungi. In Petunia hybrida, SL transport within the plant and towards the rhizosphere is driven by the ABCG-class protein PDR1. PDR1 expression is regulated by phytohormones and by the soil phosphate abundance, and thus SL transport integrates plant development with nutrient conditions. We overexpressed PDR1 (PDR1 OE) to investigate whether increased endogenous SL transport is sufficient to improve plant nutrition and productivity. Phosphorus quantification and nondestructive X-ray computed tomography were applied. Morphological and gene expression changes were quantified at cellular and whole tissue levels via time-lapse microscopy and quantitative PCR. PDR1 OE significantly enhanced phosphate uptake and plant biomass production on phosphate-poor soils. PDR1 OE plants showed increased lateral root formation, extended root hair elongation, faster mycorrhization and reduced leaf senescence. PDR1 overexpression allowed considerable SL biosynthesis by releasing SL biosynthetic genes from an SL-dependent negative feedback. The increased endogenous SL transport/biosynthesis in PDR1 OE plants is a powerful tool to improve plant growth on phosphate-poor soils. We propose PDR1 as an as yet unexplored trait to be investigated for crop production. The overexpression of PDR1 is a valuable strategy to investigate SL functions and transport routes.</AbstractText>
<CopyrightInformation>© 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Guowei</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, Zurich, 8008, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pfeifer</LastName>
<ForeName>Johannes</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Institute of Agricultural Sciences, ETH Zurich, Universitätstrasse 2, Zurich, 8092, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>de Brito Francisco</LastName>
<ForeName>Rita</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, Zurich, 8008, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Emonet</LastName>
<ForeName>Aurelia</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Département de Biologie Moléculaire Végétale, Faculté de Biologie et Médecine, Biophore, Lausanne, CH-1015, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Stirnemann</LastName>
<ForeName>Marina</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, Zurich, 8008, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gübeli</LastName>
<ForeName>Christian</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, Zurich, 8008, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hutter</LastName>
<ForeName>Olivier</ForeName>
<Initials>O</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, Zurich, 8008, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sasse</LastName>
<ForeName>Joëlle</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Carnegie Institution for Science, 1530 P Street NW, Washington, DC, 20005, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mattheyer</LastName>
<ForeName>Christian</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Goethe-Universität Frankfurt am Main, Theodor-W.-Adorno-Platz 1, Frankfurt am Main, 60323, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Stelzer</LastName>
<ForeName>Ernst</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Goethe-Universität Frankfurt am Main, Theodor-W.-Adorno-Platz 1, Frankfurt am Main, 60323, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Walter</LastName>
<ForeName>Achim</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Institute of Agricultural Sciences, ETH Zurich, Universitätstrasse 2, Zurich, 8092, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Martinoia</LastName>
<ForeName>Enrico</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, Zurich, 8008, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Borghi</LastName>
<ForeName>Lorenzo</ForeName>
<Initials>L</Initials>
<Identifier Source="ORCID">0000-0002-9631-9694</Identifier>
<AffiliationInfo>
<Affiliation>Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, Zurich, 8008, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>10</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>New Phytol</MedlineTA>
<NlmUniqueID>9882884</NlmUniqueID>
<ISSNLinking>0028-646X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007210">Indoleacetic Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007783">Lactones</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010710">Phosphates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="Y">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053898" MajorTopicYN="N">Biosynthetic Pathways</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007210" MajorTopicYN="N">Indoleacetic Acids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007783" MajorTopicYN="N">Lactones</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018519" MajorTopicYN="N">Meristem</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032306" MajorTopicYN="N">Petunia</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010710" MajorTopicYN="N">Phosphates</DescriptorName>
<QualifierName UI="Q000172" MajorTopicYN="Y">deficiency</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018520" MajorTopicYN="N">Plant Shoots</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015854" MajorTopicYN="N">Up-Regulation</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">PLEIOTROPIC DRUG RESISTANCE1 (PDR1)</Keyword>
<Keyword MajorTopicYN="Y">auxin</Keyword>
<Keyword MajorTopicYN="Y">mycorrhization</Keyword>
<Keyword MajorTopicYN="Y">petunia</Keyword>
<Keyword MajorTopicYN="Y">phosphate uptake</Keyword>
<Keyword MajorTopicYN="Y">plant biomass</Keyword>
<Keyword MajorTopicYN="Y">strigolactone</Keyword>
<Keyword MajorTopicYN="Y">strigolactone transport</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>03</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>09</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>10</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>9</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>10</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29083039</ArticleId>
<ArticleId IdType="doi">10.1111/nph.14847</ArticleId>
<ArticleId IdType="pmc">PMC5765447</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>New Phytol. 2008;180(4):747-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19138232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Dec 13;108(50):20242-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22123958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2015 Jan;12(1):23-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25549266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 Apr;7(4):162-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11950612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Oct;44(2):195-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16212600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2011 Jan;233(1):209-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21080198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2016 Feb 22;26(4):439-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26832441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2002 Mar;129(5):1131-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11874909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Jan;201(1):155-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24015802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Jan 6;433(7021):39-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15635403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Feb;155(2):721-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21119044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1966 Dec 2;154(3753):1189-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17780042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2013 Jan;6(1):153-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23204500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2016 Feb;39(2):441-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26305264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2013 Jan;6(1):18-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23155045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2015 Nov 1;142(21):3615-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26534982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Jan 28;111(4):1640-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24434551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Feb;213(3):1124-1132</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27748948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 Oct;163(2):1012-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23943865</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2016 Mar 7;9(3):338-355</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26902186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Mar 07;483(7389):341-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22398443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2000 Apr;18(4):450-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10748530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2016 Oct;33:57-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27318656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Dec;64(6):1002-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21143680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2014 Feb;15(2):211-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24112811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Dec 16;111(50):18084-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25425668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;178(4):863-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18346111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Soil. 2001 May;232(1-2):69-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11729851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Oct;68(2):377-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21711399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 May 25;96(11):5995-6000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10339530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2012 Dec;35(12):2170-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22632405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Integr Plant Biol. 2014 Mar;56(3):192-220</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24417933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2003 Dec;5(6):824-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14667404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2016 Nov;88(3):505-518</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27349589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Mar;23(3):873-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21447789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2015;66:161-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25621512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2005 Mar;8(3):443-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15737939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2012 Jan 10;2:115</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22645562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Jan 14;111(2):851-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24379380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2014 Mar;26(3):1134-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24610723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Sep;51(5):739-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17573800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2015 Mar 2;25(5):647-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25683808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2011 Apr;12(4):211-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21427763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2013 Jul;112(2):347-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23328767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2014 Aug;240(2):399-408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24888863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2010 Jul;51(7):1104-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20418334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Jun 9;435(7043):824-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15944706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Jun;202(4):1184-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24571327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2012 Jul;25(7):993-1004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22414435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biodivers. 2004 Apr;1(4):657-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17191877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Sep;151(1):400-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19641034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Nov;160(3):1329-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22968830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2008 May;45(5):581-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17964831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Sep;169(1):138-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25979917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2006;57:303-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16669764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Jun;168(2):735-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25911529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Sep 11;455(7210):189-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18690209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2013;11(1):e1001474</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23382651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2014 Dec;10(12):1028-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25344813</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B01 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000B01 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:29083039
   |texte=   Changes in the allocation of endogenous strigolactone improve plant biomass production on phosphate-poor soils.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:29083039" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020