Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mycorrhizal associations and the spatial structure of an old-growth forest community.

Identifieur interne : 000A99 ( Main/Corpus ); précédent : 000A98; suivant : 000B00

Mycorrhizal associations and the spatial structure of an old-growth forest community.

Auteurs : Daniel J. Johnson ; Keith Clay ; Richard P. Phillips

Source :

RBID : pubmed:29086005

English descriptors

Abstract

Plant-soil feedbacks are known to play a central role in species co-existence, but conceptual frameworks for predicting their magnitude and direction are lacking. We ask whether co-occurring trees that associate with different types of mycorrhizal fungi, which are hypothesized to differ in terms of nutrient use and plant-soil feedbacks, differ in sapling establishment densities and probability of co-occurrence. Given that ectomycorrhizal (ECM) trees typically have fungal structures that protect roots from pathogens whereas arbuscular mycorrhizal (AM) trees do not, we hypothesized that ECM saplings would be clustered around ECM trees, while AM saplings would be suppressed near AM trees. Most previous studies have focused on seedlings, but here we examine whether the spatial signal is evident in later life stages. We measured the spatial associations of ~ 28,000 trees using point pattern analysis in a 25-ha old-growth forest where ECM trees comprised 72% of total basal area and 42% of the total stems, while AM trees comprised the remainder. Supporting our hypothesis, AM saplings were more inhibited by AM trees, while ECM saplings were more clustered around ECM trees. The spatial patterns of AM and ECM trees on saplings of the alternate mycorrhizal type were inhibited. To the extent that similar types of feedbacks occur for other AM and ECM trees, our results suggest that fundamental differences in the nature of local-scale biotic interactions between trees and their fungal symbionts may influence forest community assembly and ecosystem dynamics.

DOI: 10.1007/s00442-017-3987-0
PubMed: 29086005

Links to Exploration step

pubmed:29086005

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mycorrhizal associations and the spatial structure of an old-growth forest community.</title>
<author>
<name sortKey="Johnson, Daniel J" sort="Johnson, Daniel J" uniqKey="Johnson D" first="Daniel J" last="Johnson">Daniel J. Johnson</name>
<affiliation>
<nlm:affiliation>Utah State University, Logan, UT, USA. daniel.johnson@usu.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Clay, Keith" sort="Clay, Keith" uniqKey="Clay K" first="Keith" last="Clay">Keith Clay</name>
<affiliation>
<nlm:affiliation>Indiana University, Bloomington, IN, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Phillips, Richard P" sort="Phillips, Richard P" uniqKey="Phillips R" first="Richard P" last="Phillips">Richard P. Phillips</name>
<affiliation>
<nlm:affiliation>Indiana University, Bloomington, IN, USA.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29086005</idno>
<idno type="pmid">29086005</idno>
<idno type="doi">10.1007/s00442-017-3987-0</idno>
<idno type="wicri:Area/Main/Corpus">000A99</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000A99</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Mycorrhizal associations and the spatial structure of an old-growth forest community.</title>
<author>
<name sortKey="Johnson, Daniel J" sort="Johnson, Daniel J" uniqKey="Johnson D" first="Daniel J" last="Johnson">Daniel J. Johnson</name>
<affiliation>
<nlm:affiliation>Utah State University, Logan, UT, USA. daniel.johnson@usu.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Clay, Keith" sort="Clay, Keith" uniqKey="Clay K" first="Keith" last="Clay">Keith Clay</name>
<affiliation>
<nlm:affiliation>Indiana University, Bloomington, IN, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Phillips, Richard P" sort="Phillips, Richard P" uniqKey="Phillips R" first="Richard P" last="Phillips">Richard P. Phillips</name>
<affiliation>
<nlm:affiliation>Indiana University, Bloomington, IN, USA.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Oecologia</title>
<idno type="eISSN">1432-1939</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Ecosystem (MeSH)</term>
<term>Forests (MeSH)</term>
<term>Mycorrhizae (MeSH)</term>
<term>Plant Roots (MeSH)</term>
<term>Soil (MeSH)</term>
<term>Soil Microbiology (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Soil</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Ecosystem</term>
<term>Forests</term>
<term>Mycorrhizae</term>
<term>Plant Roots</term>
<term>Soil Microbiology</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Plant-soil feedbacks are known to play a central role in species co-existence, but conceptual frameworks for predicting their magnitude and direction are lacking. We ask whether co-occurring trees that associate with different types of mycorrhizal fungi, which are hypothesized to differ in terms of nutrient use and plant-soil feedbacks, differ in sapling establishment densities and probability of co-occurrence. Given that ectomycorrhizal (ECM) trees typically have fungal structures that protect roots from pathogens whereas arbuscular mycorrhizal (AM) trees do not, we hypothesized that ECM saplings would be clustered around ECM trees, while AM saplings would be suppressed near AM trees. Most previous studies have focused on seedlings, but here we examine whether the spatial signal is evident in later life stages. We measured the spatial associations of ~ 28,000 trees using point pattern analysis in a 25-ha old-growth forest where ECM trees comprised 72% of total basal area and 42% of the total stems, while AM trees comprised the remainder. Supporting our hypothesis, AM saplings were more inhibited by AM trees, while ECM saplings were more clustered around ECM trees. The spatial patterns of AM and ECM trees on saplings of the alternate mycorrhizal type were inhibited. To the extent that similar types of feedbacks occur for other AM and ECM trees, our results suggest that fundamental differences in the nature of local-scale biotic interactions between trees and their fungal symbionts may influence forest community assembly and ecosystem dynamics.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Automated" Owner="NLM">
<PMID Version="1">29086005</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>09</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>09</Month>
<Day>23</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1939</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>186</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2018</Year>
<Month>01</Month>
</PubDate>
</JournalIssue>
<Title>Oecologia</Title>
<ISOAbbreviation>Oecologia</ISOAbbreviation>
</Journal>
<ArticleTitle>Mycorrhizal associations and the spatial structure of an old-growth forest community.</ArticleTitle>
<Pagination>
<MedlinePgn>195-204</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00442-017-3987-0</ELocationID>
<Abstract>
<AbstractText>Plant-soil feedbacks are known to play a central role in species co-existence, but conceptual frameworks for predicting their magnitude and direction are lacking. We ask whether co-occurring trees that associate with different types of mycorrhizal fungi, which are hypothesized to differ in terms of nutrient use and plant-soil feedbacks, differ in sapling establishment densities and probability of co-occurrence. Given that ectomycorrhizal (ECM) trees typically have fungal structures that protect roots from pathogens whereas arbuscular mycorrhizal (AM) trees do not, we hypothesized that ECM saplings would be clustered around ECM trees, while AM saplings would be suppressed near AM trees. Most previous studies have focused on seedlings, but here we examine whether the spatial signal is evident in later life stages. We measured the spatial associations of ~ 28,000 trees using point pattern analysis in a 25-ha old-growth forest where ECM trees comprised 72% of total basal area and 42% of the total stems, while AM trees comprised the remainder. Supporting our hypothesis, AM saplings were more inhibited by AM trees, while ECM saplings were more clustered around ECM trees. The spatial patterns of AM and ECM trees on saplings of the alternate mycorrhizal type were inhibited. To the extent that similar types of feedbacks occur for other AM and ECM trees, our results suggest that fundamental differences in the nature of local-scale biotic interactions between trees and their fungal symbionts may influence forest community assembly and ecosystem dynamics.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Johnson</LastName>
<ForeName>Daniel J</ForeName>
<Initials>DJ</Initials>
<AffiliationInfo>
<Affiliation>Utah State University, Logan, UT, USA. daniel.johnson@usu.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Clay</LastName>
<ForeName>Keith</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Indiana University, Bloomington, IN, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Phillips</LastName>
<ForeName>Richard P</ForeName>
<Initials>RP</Initials>
<AffiliationInfo>
<Affiliation>Indiana University, Bloomington, IN, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>1110533</GrantID>
<Agency>Division of Environmental Biology</Agency>
<Country>International</Country>
</Grant>
<Grant>
<GrantID>1046113</GrantID>
<Agency>Division of Environmental Biology</Agency>
<Country>International</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>10</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Oecologia</MedlineTA>
<NlmUniqueID>0150372</NlmUniqueID>
<ISSNLinking>0029-8549</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017753" MajorTopicYN="N">Ecosystem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D065928" MajorTopicYN="N">Forests</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="Y">Mycorrhizae</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="N">Soil Microbiology</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Arbuscular mycorrhizae</Keyword>
<Keyword MajorTopicYN="Y">Ectomycorrhizae</Keyword>
<Keyword MajorTopicYN="Y">ForestGEO</Keyword>
<Keyword MajorTopicYN="Y">Oak–hickory forest</Keyword>
<Keyword MajorTopicYN="Y">Pair-correlation function</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>02</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>10</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>11</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>9</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>11</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29086005</ArticleId>
<ArticleId IdType="doi">10.1007/s00442-017-3987-0</ArticleId>
<ArticleId IdType="pii">10.1007/s00442-017-3987-0</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Science. 2017 Jan 13;355(6321):181-184</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28082590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Jan;209(2):845-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26390155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Jul 16;329(5989):330-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20576853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2017 Jun 30;356(6345):1389-1392</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28663501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Mar 16;404(6775):278-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10749209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Jul;199(1):41-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23713553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2017 Apr;27(3):211-223</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27838856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2006 Jul;16(5):299-363</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16845554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2012 Dec;93(12):2637-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23431594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2012 Aug 7;279(1740):3020-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22496190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2007 Mar;88(3):567-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17503583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Jun 13;320(5882):1452-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18556548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2016 Jun;19(6):657-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27111545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2013 May;94(5):1165-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23858656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2009 Jan;90(1):46-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19294912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 1972;10:429-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18479192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;169(1):27-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16390416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2001 Dec;129(4):611-619</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24577702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Mar 30;404(6777):493-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10761916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Feb;213(3):1440-1451</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27678253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2016 Apr;19(4):383-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26833573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glob Chang Biol. 2015 Feb;21(2):528-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25258024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2012 Mar;93(3):511-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22624206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 May 18;336(6083):904-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22605774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2006 Sep;9(9):1080-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16925657</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A99 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000A99 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:29086005
   |texte=   Mycorrhizal associations and the spatial structure of an old-growth forest community.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:29086005" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020