Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The mycorrhiza-dependent defensin MtDefMd1 of Medicago truncatula acts during the late restructuring stages of arbuscule-containing cells.

Identifieur interne : 000A00 ( Main/Corpus ); précédent : 000999; suivant : 000A01

The mycorrhiza-dependent defensin MtDefMd1 of Medicago truncatula acts during the late restructuring stages of arbuscule-containing cells.

Auteurs : Marian Uhe ; Claudia Hogekamp ; Rico M. Hartmann ; Natalija Hohnjec ; Helge Küster

Source :

RBID : pubmed:29370287

English descriptors

Abstract

Different symbiotic and pathogenic plant-microbe interactions involve the production of cysteine-rich antimicrobial defensins. In Medicago truncatula, the expression of four MtDefMd genes, encoding arbuscular mycorrhiza-dependent defensins containing an N-terminal signal peptide and exhibiting some differences to non-symbiotic defensins, raised over the time of fungal colonization. Whereas the MtDefMd1 and MtDefMd2 promoters were inactive in cells containing young arbuscules, cells with fully developed arbuscules displayed different levels of promoter activities, indicating an up-regulation towards later stages of arbuscule formation. MtDefMd1 and MtDefMd2 expression was absent or strongly down-regulated in mycorrhized ram1-1 and pt4-2 mutants, known for defects in arbuscule branching or premature arbuscule degeneration, respectively. A ~97% knock-down of MtDefMd1/MtDefMd2 expression did not significantly affect arbuscule size. Although overexpression of MtDefMd1 in arbuscule-containing cells led to an up-regulation of MtRam1, encoding a key transcriptional regulator of arbuscule formation, no morphological changes were evident. Co-localization of an MtDefMd1-mGFP6 fusion with additional, subcellular markers revealed that this defensin is associated with arbuscules in later stages of their life-cycle. MtDefMd1-mGFP6 was detected in cells with older arbuscules about to collapse, and ultimately in vacuolar compartments. Comparisons with mycorrhized roots expressing a tonoplast marker indicated that MtDefMd1 acts during late restructuring processes of arbuscule-containing cells, upon their transition into a post-symbiotic state.

DOI: 10.1371/journal.pone.0191841
PubMed: 29370287
PubMed Central: PMC5784984

Links to Exploration step

pubmed:29370287

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The mycorrhiza-dependent defensin MtDefMd1 of Medicago truncatula acts during the late restructuring stages of arbuscule-containing cells.</title>
<author>
<name sortKey="Uhe, Marian" sort="Uhe, Marian" uniqKey="Uhe M" first="Marian" last="Uhe">Marian Uhe</name>
<affiliation>
<nlm:affiliation>Unit IV-Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Hannover, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hogekamp, Claudia" sort="Hogekamp, Claudia" uniqKey="Hogekamp C" first="Claudia" last="Hogekamp">Claudia Hogekamp</name>
<affiliation>
<nlm:affiliation>Unit IV-Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Hannover, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hartmann, Rico M" sort="Hartmann, Rico M" uniqKey="Hartmann R" first="Rico M" last="Hartmann">Rico M. Hartmann</name>
<affiliation>
<nlm:affiliation>Unit IV-Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Hannover, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hohnjec, Natalija" sort="Hohnjec, Natalija" uniqKey="Hohnjec N" first="Natalija" last="Hohnjec">Natalija Hohnjec</name>
<affiliation>
<nlm:affiliation>Unit IV-Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Hannover, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kuster, Helge" sort="Kuster, Helge" uniqKey="Kuster H" first="Helge" last="Küster">Helge Küster</name>
<affiliation>
<nlm:affiliation>Unit IV-Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Hannover, Germany.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29370287</idno>
<idno type="pmid">29370287</idno>
<idno type="doi">10.1371/journal.pone.0191841</idno>
<idno type="pmc">PMC5784984</idno>
<idno type="wicri:Area/Main/Corpus">000A00</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000A00</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The mycorrhiza-dependent defensin MtDefMd1 of Medicago truncatula acts during the late restructuring stages of arbuscule-containing cells.</title>
<author>
<name sortKey="Uhe, Marian" sort="Uhe, Marian" uniqKey="Uhe M" first="Marian" last="Uhe">Marian Uhe</name>
<affiliation>
<nlm:affiliation>Unit IV-Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Hannover, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hogekamp, Claudia" sort="Hogekamp, Claudia" uniqKey="Hogekamp C" first="Claudia" last="Hogekamp">Claudia Hogekamp</name>
<affiliation>
<nlm:affiliation>Unit IV-Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Hannover, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hartmann, Rico M" sort="Hartmann, Rico M" uniqKey="Hartmann R" first="Rico M" last="Hartmann">Rico M. Hartmann</name>
<affiliation>
<nlm:affiliation>Unit IV-Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Hannover, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hohnjec, Natalija" sort="Hohnjec, Natalija" uniqKey="Hohnjec N" first="Natalija" last="Hohnjec">Natalija Hohnjec</name>
<affiliation>
<nlm:affiliation>Unit IV-Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Hannover, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kuster, Helge" sort="Kuster, Helge" uniqKey="Kuster H" first="Helge" last="Küster">Helge Küster</name>
<affiliation>
<nlm:affiliation>Unit IV-Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Hannover, Germany.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Defensins (chemistry)</term>
<term>Defensins (genetics)</term>
<term>Defensins (physiology)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Medicago truncatula (genetics)</term>
<term>Medicago truncatula (microbiology)</term>
<term>Medicago truncatula (physiology)</term>
<term>Models, Molecular (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Mycorrhizae (genetics)</term>
<term>Mycorrhizae (physiology)</term>
<term>Plant Proteins (chemistry)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (physiology)</term>
<term>Plant Roots (genetics)</term>
<term>Plant Roots (microbiology)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Promoter Regions, Genetic (MeSH)</term>
<term>Static Electricity (MeSH)</term>
<term>Symbiosis (genetics)</term>
<term>Symbiosis (physiology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Defensins</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Defensins</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Defensins</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Medicago truncatula</term>
<term>Mycorrhizae</term>
<term>Plant Roots</term>
<term>Symbiosis</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Medicago truncatula</term>
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Medicago truncatula</term>
<term>Mycorrhizae</term>
<term>Symbiosis</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genes, Plant</term>
<term>Models, Molecular</term>
<term>Mutation</term>
<term>Plants, Genetically Modified</term>
<term>Promoter Regions, Genetic</term>
<term>Static Electricity</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Different symbiotic and pathogenic plant-microbe interactions involve the production of cysteine-rich antimicrobial defensins. In Medicago truncatula, the expression of four MtDefMd genes, encoding arbuscular mycorrhiza-dependent defensins containing an N-terminal signal peptide and exhibiting some differences to non-symbiotic defensins, raised over the time of fungal colonization. Whereas the MtDefMd1 and MtDefMd2 promoters were inactive in cells containing young arbuscules, cells with fully developed arbuscules displayed different levels of promoter activities, indicating an up-regulation towards later stages of arbuscule formation. MtDefMd1 and MtDefMd2 expression was absent or strongly down-regulated in mycorrhized ram1-1 and pt4-2 mutants, known for defects in arbuscule branching or premature arbuscule degeneration, respectively. A ~97% knock-down of MtDefMd1/MtDefMd2 expression did not significantly affect arbuscule size. Although overexpression of MtDefMd1 in arbuscule-containing cells led to an up-regulation of MtRam1, encoding a key transcriptional regulator of arbuscule formation, no morphological changes were evident. Co-localization of an MtDefMd1-mGFP6 fusion with additional, subcellular markers revealed that this defensin is associated with arbuscules in later stages of their life-cycle. MtDefMd1-mGFP6 was detected in cells with older arbuscules about to collapse, and ultimately in vacuolar compartments. Comparisons with mycorrhized roots expressing a tonoplast marker indicated that MtDefMd1 acts during late restructuring processes of arbuscule-containing cells, upon their transition into a post-symbiotic state.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29370287</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>03</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>13</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2018</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>The mycorrhiza-dependent defensin MtDefMd1 of Medicago truncatula acts during the late restructuring stages of arbuscule-containing cells.</ArticleTitle>
<Pagination>
<MedlinePgn>e0191841</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0191841</ELocationID>
<Abstract>
<AbstractText>Different symbiotic and pathogenic plant-microbe interactions involve the production of cysteine-rich antimicrobial defensins. In Medicago truncatula, the expression of four MtDefMd genes, encoding arbuscular mycorrhiza-dependent defensins containing an N-terminal signal peptide and exhibiting some differences to non-symbiotic defensins, raised over the time of fungal colonization. Whereas the MtDefMd1 and MtDefMd2 promoters were inactive in cells containing young arbuscules, cells with fully developed arbuscules displayed different levels of promoter activities, indicating an up-regulation towards later stages of arbuscule formation. MtDefMd1 and MtDefMd2 expression was absent or strongly down-regulated in mycorrhized ram1-1 and pt4-2 mutants, known for defects in arbuscule branching or premature arbuscule degeneration, respectively. A ~97% knock-down of MtDefMd1/MtDefMd2 expression did not significantly affect arbuscule size. Although overexpression of MtDefMd1 in arbuscule-containing cells led to an up-regulation of MtRam1, encoding a key transcriptional regulator of arbuscule formation, no morphological changes were evident. Co-localization of an MtDefMd1-mGFP6 fusion with additional, subcellular markers revealed that this defensin is associated with arbuscules in later stages of their life-cycle. MtDefMd1-mGFP6 was detected in cells with older arbuscules about to collapse, and ultimately in vacuolar compartments. Comparisons with mycorrhized roots expressing a tonoplast marker indicated that MtDefMd1 acts during late restructuring processes of arbuscule-containing cells, upon their transition into a post-symbiotic state.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Uhe</LastName>
<ForeName>Marian</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Unit IV-Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Hannover, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hogekamp</LastName>
<ForeName>Claudia</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Unit IV-Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Hannover, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hartmann</LastName>
<ForeName>Rico M</ForeName>
<Initials>RM</Initials>
<AffiliationInfo>
<Affiliation>Unit IV-Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Hannover, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hohnjec</LastName>
<ForeName>Natalija</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Unit IV-Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Hannover, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Küster</LastName>
<ForeName>Helge</ForeName>
<Initials>H</Initials>
<Identifier Source="ORCID">0000-0002-9197-9802</Identifier>
<AffiliationInfo>
<Affiliation>Unit IV-Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Hannover, Germany.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>01</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D023082">Defensins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D023082" MajorTopicYN="N">Defensins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046913" MajorTopicYN="N">Medicago truncatula</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011401" MajorTopicYN="N">Promoter Regions, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055672" MajorTopicYN="N">Static Electricity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>11</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>01</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>1</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>1</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>3</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29370287</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0191841</ArticleId>
<ArticleId IdType="pii">PONE-D-17-39138</ArticleId>
<ArticleId IdType="pmc">PMC5784984</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol. 1993 Oct;103(2):379-384</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12231944</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2014 Apr 27;15:312</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24767513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Nov 23;7(1):16157</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29170445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Jan;128(1):108-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11788757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2015 Aug;9(8):1723-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25603394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010 Jun 28;5(6):e11335</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20596258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2013 Aug;57(8):3667-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23689717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Dec;20(12 ):3467-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19106374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Apr;137(4):1283-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15778460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Dec;17(12):3489-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16284314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Dec 04;8(12):e82485</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24324798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Aug 10;293(5532):1129-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11498589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Jul;211(2):411-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27241115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Sep;51(6):1126-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17666025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2014 Dec;80(6):1151-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25329881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1995 Nov;29(4):759-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8541502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2011;62:227-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21391813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Oct;14(10):2413-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12368495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20117-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24277808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2002 Dec;216(2):193-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12447532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2014 Nov;55(11):1945-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25231957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Theor Biol. 2002 Jan 21;214(2):215-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11812174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2012 Dec 4;22(23):2236-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23122845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Sep;211(4):1338-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27110912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Dec;68(6):954-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21848683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2010 Mar;51(3):341-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20097910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2003 Sep;29(9):1955-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14584670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2004 May;55(399):983-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15073217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 May;132(1):161-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12746522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2017 Jun 16;356(6343):1172-1175</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28596307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Aug 06;10 (8):e0132701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26248029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Dec;169(4):2774-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26511916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2011 Sep 29;8(10):785-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21959131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2009 Jan 22;9:10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19161626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2005 May;221(2):184-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15871030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Jul;199(1):188-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23506613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Apr 8;111(14):5183-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24706863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1998 May 29;279(1):257-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9636715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2014 Jun 30;5:326</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25071739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2017 Aug;38:101-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28521260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2013 May 16;13:82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23679580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2009 Nov;8(11):5363-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19764776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Aug;55(3):504-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18410479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2014 Apr 29;26(4):1808-1817</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24781114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 May 23;283(21):14445-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18339623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2016 Jul;162(7):1173-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27082768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Jan 30;104(5):1720-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17242358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2017 Jun 16;356(6343):1175-1178</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28596311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Mar 13;109(11):E665-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22355114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2015 Aug;26:57-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26116977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1990 Jun;87(12):4645-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2162051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1987;56(2-3):309-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3315864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2010 Aug 11;18(8):1011-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20696401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2014 Aug;79(3):398-412</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24888347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2013 Nov;36(11):2059-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23586685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2012 Feb;69(3):510-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21978245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1990 Jan;87(1):210-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1688654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Feb 26;327(5969):1122-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20185722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2012 Jul 19;7(8):1511-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22814390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2012 Apr;84(1):166-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22384976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2005 Jun;58(3):385-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16021402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Jun 9;435(7043):824-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15944706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Dec;157(4):2023-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22034628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Mar;131(3):1496-507</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12644699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Sep;21(9):2811-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19734435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2007 Jan 30;46(4):987-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17240982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Mar 4;111(9):3561-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24501120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Microbiol Biotechnol. 2011;21(3-4):83-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22286036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biopolymers. 1998;47(6):479-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10333739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2017 Apr 24;27(8):1206-1212</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28392110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2000 Jan;13(1):54-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10656585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 May 22;109(21):8316-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22566631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jul 19;102(29):10375-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16006515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2015 Jan;56(1):e1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25432968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Jun;141(2):711-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16648219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013 May 07;14:306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23647797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2004 Jan;17(1):62-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14714869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2015 Aug 17;25(16):2189-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26234213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2006 Jul;4(7):e226</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16787107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 Jan;22(1):63-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19061403</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A00 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000A00 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:29370287
   |texte=   The mycorrhiza-dependent defensin MtDefMd1 of Medicago truncatula acts during the late restructuring stages of arbuscule-containing cells.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:29370287" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020