Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Fungal community profiles in agricultural soils of a long-term field trial under different tillage, fertilization and crop rotation conditions analyzed by high-throughput ITS-amplicon sequencing.

Identifieur interne : 000927 ( Main/Corpus ); précédent : 000926; suivant : 000928

Fungal community profiles in agricultural soils of a long-term field trial under different tillage, fertilization and crop rotation conditions analyzed by high-throughput ITS-amplicon sequencing.

Auteurs : Loreen Sommermann ; Joerg Geistlinger ; Daniel Wibberg ; Annette Deubel ; Jessica Zwanzig ; Doreen Babin ; Andreas Schlüter ; Ingo Schellenberg

Source :

RBID : pubmed:29621291

English descriptors

Abstract

Fungal communities in agricultural soils are assumed to be affected by soil and crop management. Our intention was to investigate the impact of different tillage and fertilization practices on fungal communities in a long-term crop rotation field trial established in 1992 in Central Germany. Two winter wheat fields in replicated strip-tillage design, comprising conventional vs. conservation tillage, intensive vs. extensive fertilization and different pre-crops (maize vs. rapeseed) were analyzed by a metabarcoding approach applying Illumina paired-end sequencing of amplicons generated by two recently developed primer pairs targeting the two fungal Internal Transcribed Spacer regions (ITS1, ITS2). Analysis of 5.1 million high-quality sequence reads uncovered a diverse fungal community in the two fields, composed of 296 fungal genera including 3,398 Operational Taxonomic Units (OTUs) at the 97% sequence similarity threshold. Both primer pairs detected the same fungal phyla (Basidio-, Asco-, Zygo-, Glomero- and Chytridiomycota), but in different relative abundances. OTU richness was higher in the ITS1 dataset, while ITS2 data were more diverse and of higher evenness. Effects of farming practice on fungal community structures were revealed. Almost two-thirds of the fungal genera were represented in all different soil treatments, whereas the remaining genera clearly responded to farming practice. Principal Component Analysis revealed four distinct clusters according to tillage practice and pre-crop. Analysis of Variance (ANOVA) substantiated the results and proved significant influences of tillage and pre-crop, while fertilization had the smallest and non-significant effect. In-depth analysis of putative phytopathogenic and plant beneficial fungal groups indicated distinct responses; for example Fusarium was significantly enriched in the intensively fertilized conservation tillage variants with the pre-crop maize, while Phoma displayed significant association with conventional tillage and pre-crop rapeseed. Many putative plant beneficial fungi also reacted differentially to farming practice with the most distinct responders identified among the Glomeromycota (arbuscular mycorrhizal fungi, AMF).

DOI: 10.1371/journal.pone.0195345
PubMed: 29621291
PubMed Central: PMC5886558

Links to Exploration step

pubmed:29621291

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Fungal community profiles in agricultural soils of a long-term field trial under different tillage, fertilization and crop rotation conditions analyzed by high-throughput ITS-amplicon sequencing.</title>
<author>
<name sortKey="Sommermann, Loreen" sort="Sommermann, Loreen" uniqKey="Sommermann L" first="Loreen" last="Sommermann">Loreen Sommermann</name>
<affiliation>
<nlm:affiliation>Institute of Bioanalytical Sciences (IBAS), Anhalt University of Applied Sciences, Bernburg, Saxony-Anhalt, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Geistlinger, Joerg" sort="Geistlinger, Joerg" uniqKey="Geistlinger J" first="Joerg" last="Geistlinger">Joerg Geistlinger</name>
<affiliation>
<nlm:affiliation>Institute of Bioanalytical Sciences (IBAS), Anhalt University of Applied Sciences, Bernburg, Saxony-Anhalt, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wibberg, Daniel" sort="Wibberg, Daniel" uniqKey="Wibberg D" first="Daniel" last="Wibberg">Daniel Wibberg</name>
<affiliation>
<nlm:affiliation>Center for Biotechnology (CeBiTec), Genome Research of Industrial Microorganisms (GRIM), Bielefeld University, Bielefeld, North Rhine-Westphalia, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Deubel, Annette" sort="Deubel, Annette" uniqKey="Deubel A" first="Annette" last="Deubel">Annette Deubel</name>
<affiliation>
<nlm:affiliation>Department of Agriculture, Ecotrophology and Landscape Development, Anhalt University of Applied Sciences, Bernburg, Saxony-Anhalt, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zwanzig, Jessica" sort="Zwanzig, Jessica" uniqKey="Zwanzig J" first="Jessica" last="Zwanzig">Jessica Zwanzig</name>
<affiliation>
<nlm:affiliation>Institute of Bioanalytical Sciences (IBAS), Anhalt University of Applied Sciences, Bernburg, Saxony-Anhalt, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Babin, Doreen" sort="Babin, Doreen" uniqKey="Babin D" first="Doreen" last="Babin">Doreen Babin</name>
<affiliation>
<nlm:affiliation>Institute for Epidemiology and Pathogen Diagnostics, Julius-Kühn-Institut-Federal Research Centre for Cultivated Plants (JKI), Braunschweig, Lower Saxony, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schluter, Andreas" sort="Schluter, Andreas" uniqKey="Schluter A" first="Andreas" last="Schlüter">Andreas Schlüter</name>
<affiliation>
<nlm:affiliation>Center for Biotechnology (CeBiTec), Genome Research of Industrial Microorganisms (GRIM), Bielefeld University, Bielefeld, North Rhine-Westphalia, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schellenberg, Ingo" sort="Schellenberg, Ingo" uniqKey="Schellenberg I" first="Ingo" last="Schellenberg">Ingo Schellenberg</name>
<affiliation>
<nlm:affiliation>Institute of Bioanalytical Sciences (IBAS), Anhalt University of Applied Sciences, Bernburg, Saxony-Anhalt, Germany.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29621291</idno>
<idno type="pmid">29621291</idno>
<idno type="doi">10.1371/journal.pone.0195345</idno>
<idno type="pmc">PMC5886558</idno>
<idno type="wicri:Area/Main/Corpus">000927</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000927</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Fungal community profiles in agricultural soils of a long-term field trial under different tillage, fertilization and crop rotation conditions analyzed by high-throughput ITS-amplicon sequencing.</title>
<author>
<name sortKey="Sommermann, Loreen" sort="Sommermann, Loreen" uniqKey="Sommermann L" first="Loreen" last="Sommermann">Loreen Sommermann</name>
<affiliation>
<nlm:affiliation>Institute of Bioanalytical Sciences (IBAS), Anhalt University of Applied Sciences, Bernburg, Saxony-Anhalt, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Geistlinger, Joerg" sort="Geistlinger, Joerg" uniqKey="Geistlinger J" first="Joerg" last="Geistlinger">Joerg Geistlinger</name>
<affiliation>
<nlm:affiliation>Institute of Bioanalytical Sciences (IBAS), Anhalt University of Applied Sciences, Bernburg, Saxony-Anhalt, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wibberg, Daniel" sort="Wibberg, Daniel" uniqKey="Wibberg D" first="Daniel" last="Wibberg">Daniel Wibberg</name>
<affiliation>
<nlm:affiliation>Center for Biotechnology (CeBiTec), Genome Research of Industrial Microorganisms (GRIM), Bielefeld University, Bielefeld, North Rhine-Westphalia, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Deubel, Annette" sort="Deubel, Annette" uniqKey="Deubel A" first="Annette" last="Deubel">Annette Deubel</name>
<affiliation>
<nlm:affiliation>Department of Agriculture, Ecotrophology and Landscape Development, Anhalt University of Applied Sciences, Bernburg, Saxony-Anhalt, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zwanzig, Jessica" sort="Zwanzig, Jessica" uniqKey="Zwanzig J" first="Jessica" last="Zwanzig">Jessica Zwanzig</name>
<affiliation>
<nlm:affiliation>Institute of Bioanalytical Sciences (IBAS), Anhalt University of Applied Sciences, Bernburg, Saxony-Anhalt, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Babin, Doreen" sort="Babin, Doreen" uniqKey="Babin D" first="Doreen" last="Babin">Doreen Babin</name>
<affiliation>
<nlm:affiliation>Institute for Epidemiology and Pathogen Diagnostics, Julius-Kühn-Institut-Federal Research Centre for Cultivated Plants (JKI), Braunschweig, Lower Saxony, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schluter, Andreas" sort="Schluter, Andreas" uniqKey="Schluter A" first="Andreas" last="Schlüter">Andreas Schlüter</name>
<affiliation>
<nlm:affiliation>Center for Biotechnology (CeBiTec), Genome Research of Industrial Microorganisms (GRIM), Bielefeld University, Bielefeld, North Rhine-Westphalia, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schellenberg, Ingo" sort="Schellenberg, Ingo" uniqKey="Schellenberg I" first="Ingo" last="Schellenberg">Ingo Schellenberg</name>
<affiliation>
<nlm:affiliation>Institute of Bioanalytical Sciences (IBAS), Anhalt University of Applied Sciences, Bernburg, Saxony-Anhalt, Germany.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Agriculture (methods)</term>
<term>Crop Production (methods)</term>
<term>Crops, Agricultural (microbiology)</term>
<term>Farms (MeSH)</term>
<term>Fungi (MeSH)</term>
<term>Germany (MeSH)</term>
<term>Mycorrhizae (physiology)</term>
<term>Soil (chemistry)</term>
<term>Soil Microbiology (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Soil</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Agriculture</term>
<term>Crop Production</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Crops, Agricultural</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Farms</term>
<term>Fungi</term>
<term>Germany</term>
<term>Soil Microbiology</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Fungal communities in agricultural soils are assumed to be affected by soil and crop management. Our intention was to investigate the impact of different tillage and fertilization practices on fungal communities in a long-term crop rotation field trial established in 1992 in Central Germany. Two winter wheat fields in replicated strip-tillage design, comprising conventional vs. conservation tillage, intensive vs. extensive fertilization and different pre-crops (maize vs. rapeseed) were analyzed by a metabarcoding approach applying Illumina paired-end sequencing of amplicons generated by two recently developed primer pairs targeting the two fungal Internal Transcribed Spacer regions (ITS1, ITS2). Analysis of 5.1 million high-quality sequence reads uncovered a diverse fungal community in the two fields, composed of 296 fungal genera including 3,398 Operational Taxonomic Units (OTUs) at the 97% sequence similarity threshold. Both primer pairs detected the same fungal phyla (Basidio-, Asco-, Zygo-, Glomero- and Chytridiomycota), but in different relative abundances. OTU richness was higher in the ITS1 dataset, while ITS2 data were more diverse and of higher evenness. Effects of farming practice on fungal community structures were revealed. Almost two-thirds of the fungal genera were represented in all different soil treatments, whereas the remaining genera clearly responded to farming practice. Principal Component Analysis revealed four distinct clusters according to tillage practice and pre-crop. Analysis of Variance (ANOVA) substantiated the results and proved significant influences of tillage and pre-crop, while fertilization had the smallest and non-significant effect. In-depth analysis of putative phytopathogenic and plant beneficial fungal groups indicated distinct responses; for example Fusarium was significantly enriched in the intensively fertilized conservation tillage variants with the pre-crop maize, while Phoma displayed significant association with conventional tillage and pre-crop rapeseed. Many putative plant beneficial fungi also reacted differentially to farming practice with the most distinct responders identified among the Glomeromycota (arbuscular mycorrhizal fungi, AMF).</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29621291</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>08</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>14</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>13</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2018</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Fungal community profiles in agricultural soils of a long-term field trial under different tillage, fertilization and crop rotation conditions analyzed by high-throughput ITS-amplicon sequencing.</ArticleTitle>
<Pagination>
<MedlinePgn>e0195345</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0195345</ELocationID>
<Abstract>
<AbstractText>Fungal communities in agricultural soils are assumed to be affected by soil and crop management. Our intention was to investigate the impact of different tillage and fertilization practices on fungal communities in a long-term crop rotation field trial established in 1992 in Central Germany. Two winter wheat fields in replicated strip-tillage design, comprising conventional vs. conservation tillage, intensive vs. extensive fertilization and different pre-crops (maize vs. rapeseed) were analyzed by a metabarcoding approach applying Illumina paired-end sequencing of amplicons generated by two recently developed primer pairs targeting the two fungal Internal Transcribed Spacer regions (ITS1, ITS2). Analysis of 5.1 million high-quality sequence reads uncovered a diverse fungal community in the two fields, composed of 296 fungal genera including 3,398 Operational Taxonomic Units (OTUs) at the 97% sequence similarity threshold. Both primer pairs detected the same fungal phyla (Basidio-, Asco-, Zygo-, Glomero- and Chytridiomycota), but in different relative abundances. OTU richness was higher in the ITS1 dataset, while ITS2 data were more diverse and of higher evenness. Effects of farming practice on fungal community structures were revealed. Almost two-thirds of the fungal genera were represented in all different soil treatments, whereas the remaining genera clearly responded to farming practice. Principal Component Analysis revealed four distinct clusters according to tillage practice and pre-crop. Analysis of Variance (ANOVA) substantiated the results and proved significant influences of tillage and pre-crop, while fertilization had the smallest and non-significant effect. In-depth analysis of putative phytopathogenic and plant beneficial fungal groups indicated distinct responses; for example Fusarium was significantly enriched in the intensively fertilized conservation tillage variants with the pre-crop maize, while Phoma displayed significant association with conventional tillage and pre-crop rapeseed. Many putative plant beneficial fungi also reacted differentially to farming practice with the most distinct responders identified among the Glomeromycota (arbuscular mycorrhizal fungi, AMF).</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sommermann</LastName>
<ForeName>Loreen</ForeName>
<Initials>L</Initials>
<Identifier Source="ORCID">0000-0002-6293-877X</Identifier>
<AffiliationInfo>
<Affiliation>Institute of Bioanalytical Sciences (IBAS), Anhalt University of Applied Sciences, Bernburg, Saxony-Anhalt, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Geistlinger</LastName>
<ForeName>Joerg</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Institute of Bioanalytical Sciences (IBAS), Anhalt University of Applied Sciences, Bernburg, Saxony-Anhalt, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wibberg</LastName>
<ForeName>Daniel</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Center for Biotechnology (CeBiTec), Genome Research of Industrial Microorganisms (GRIM), Bielefeld University, Bielefeld, North Rhine-Westphalia, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Deubel</LastName>
<ForeName>Annette</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Agriculture, Ecotrophology and Landscape Development, Anhalt University of Applied Sciences, Bernburg, Saxony-Anhalt, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zwanzig</LastName>
<ForeName>Jessica</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Institute of Bioanalytical Sciences (IBAS), Anhalt University of Applied Sciences, Bernburg, Saxony-Anhalt, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Babin</LastName>
<ForeName>Doreen</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Institute for Epidemiology and Pathogen Diagnostics, Julius-Kühn-Institut-Federal Research Centre for Cultivated Plants (JKI), Braunschweig, Lower Saxony, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schlüter</LastName>
<ForeName>Andreas</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Center for Biotechnology (CeBiTec), Genome Research of Industrial Microorganisms (GRIM), Bielefeld University, Bielefeld, North Rhine-Westphalia, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schellenberg</LastName>
<ForeName>Ingo</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Institute of Bioanalytical Sciences (IBAS), Anhalt University of Applied Sciences, Bernburg, Saxony-Anhalt, Germany.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>04</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000383" MajorTopicYN="N">Agriculture</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000069599" MajorTopicYN="N">Crop Production</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018556" MajorTopicYN="N">Crops, Agricultural</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000072480" MajorTopicYN="N">Farms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005658" MajorTopicYN="N">Fungi</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005858" MajorTopicYN="N">Germany</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="Y">Soil Microbiology</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>11</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>03</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>4</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>4</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>8</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29621291</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0195345</ArticleId>
<ArticleId IdType="pii">PONE-D-17-41271</ArticleId>
<ArticleId IdType="pmc">PMC5886558</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Ecol Resour. 2013 Mar;13(2):218-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23350562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2010 Mar-Apr;102(2):261-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20361494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol Biotechnol. 2017 Feb 28;27(2):321-334</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27780961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Evol. 2017 Jan 24;7(4):1181-1189</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28303188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2014 Jul;23 (13):3341-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24888892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Jul 01;10(7):e0131069</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26132745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2004 Jun 12;20(9):1453-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14871861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2013 Oct;10(10):996-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23955772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20117-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24277808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2016 Feb;92(2):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26738557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2015 Jul 1;43(W1):W566-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25969447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 May 09;486(7402):222-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22699611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2004 Jan;2(1):43-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15035008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Jun;166(3):1063-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15869663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011 Feb 15;6(2):e16793</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21347229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Apr 08;9(4):e94144</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24714177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2014 Mar;87(3):650-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24245591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Sep 20;102(38):13386-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16174735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2014 Jan;24(1):1-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23715868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Oct 02;9(9):e107783</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25275381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Mar;205(4):1577-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25545193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(7):e40863</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22808280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Evol. 2014 Jul;4(13):2642-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25077016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2006 Jul;15(8):2277-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16780440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;172(1):159-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16945098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2007 Aug;73(16):5261-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17586664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2016 Mar 17;17 :245</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26988094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol Resour. 2017 Jul;17 (4):730-741</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27775220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2015 Nov;9(11):2349-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25909975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2011 Sep 30;12:385</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21961884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Jun 16;9(6):e97629</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24933453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Bioanal Chem. 2015 Mar;407(7):1841-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25577362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Jan;213(2):874-885</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27643809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Divers. 2012 Jul 1;55(1):77-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22956918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Oct 1;26(19):2460-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20709691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2015 Sep;99(18):7791-803</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25998656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Nov 1;27(21):2957-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21903629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2013 Dec;10(12):1200-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24076764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2013 Apr;84(1):165-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23176677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Apr 15;27(8):1159-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21349862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2003 Nov;5(11):1111-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14641591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Mol Subcell Biol. 2012;53:173-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22222832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 1997 Oct;87(10):1054-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18945040</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000927 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000927 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:29621291
   |texte=   Fungal community profiles in agricultural soils of a long-term field trial under different tillage, fertilization and crop rotation conditions analyzed by high-throughput ITS-amplicon sequencing.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:29621291" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020