Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Age alters uptake pattern of organic and inorganic nitrogen by rubber trees.

Identifieur interne : 000918 ( Main/Corpus ); précédent : 000917; suivant : 000919

Age alters uptake pattern of organic and inorganic nitrogen by rubber trees.

Auteurs : Min Liu ; Fanzhen Xu ; Xingliang Xu ; Wolfgang Wanek ; Xiaodong Yang

Source :

RBID : pubmed:29660099

English descriptors

Abstract

Several studies have explored plant nutrient acquisition during ecosystem succession, but it remains unclear how age affects nitrogen (N) acquisition by the same tree species. Clarifying the age effect will be beneficial to fertilization management through improving N-use efficiency and reducing the risk of environmental pollution due to NO3- leaching. To clarify the effect of age on N uptake, rubber (Hevea brasiliensis (Willd. ex A. Juss.) Muell. Arg.) plantations of five ages (7, 16, 24, 32 and 49 years) were selected in Xishuangbanna of southern China for brief 15N exposures of intact roots using field hydroponic experiments. 15N-labeled NH4+, NO3- or glycine were applied in this study. All targeted rubber trees uptake rates followed an order of NH4+ > glycine > NO3-. As age increased, NH4+ uptake increased first and then decreased sharply, partly consistent with the pattern of soil NH4+ concentrations. Uptake of glycine decreased first and then increased gradually, while no significant change of NO3- uptake rates existed with increasing age. Overall, rubber trees with ages from 7 to 49 years all showed a preference for NH4+ uptake. Young rubber trees (7 and 16 years) had higher NH4+ and lower glycine preferences than older trees (24, 32 and 49 years). Mycorrhizal colonization rates of rubber trees were higher in intermediately aged plantations (16, 24 and 32 years) than in plantations aged 7 and 49 years. A positive relationship was observed between arbuscular mycorrhizal colonization rates and NO3- preference. The results from this study demonstrate that rubber trees do not change their preference for NH4+ but strongly decreased their reliance on it with age. These findings indicate that the shift of N uptake patterns with age should be taken into account for rubber fertilization management to improve N-use efficiency and reduce the risk of environmental pollution during rubber production.

DOI: 10.1093/treephys/tpy031
PubMed: 29660099

Links to Exploration step

pubmed:29660099

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Age alters uptake pattern of organic and inorganic nitrogen by rubber trees.</title>
<author>
<name sortKey="Liu, Min" sort="Liu, Min" uniqKey="Liu M" first="Min" last="Liu">Min Liu</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Tropical Forest Ecology of Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing, China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>College of Resources and Environment, University of Chinese Academy of Sciences, Yanqi Lake, Huairou District, Beijing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Xu, Fanzhen" sort="Xu, Fanzhen" uniqKey="Xu F" first="Fanzhen" last="Xu">Fanzhen Xu</name>
<affiliation>
<nlm:affiliation>Laibin Academy of Agricultural Science, Renmin Road, Chengbei District, Laibin, Guangxi Province, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Xu, Xingliang" sort="Xu, Xingliang" uniqKey="Xu X" first="Xingliang" last="Xu">Xingliang Xu</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Tropical Forest Ecology of Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wanek, Wolfgang" sort="Wanek, Wolfgang" uniqKey="Wanek W" first="Wolfgang" last="Wanek">Wolfgang Wanek</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, Research Network 'Chemistry meets Microbiology', University of Vienna, Althanstrasse 14, Wien, Austria.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yang, Xiaodong" sort="Yang, Xiaodong" uniqKey="Yang X" first="Xiaodong" last="Yang">Xiaodong Yang</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Tropical Forest Ecology of Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29660099</idno>
<idno type="pmid">29660099</idno>
<idno type="doi">10.1093/treephys/tpy031</idno>
<idno type="wicri:Area/Main/Corpus">000918</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000918</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Age alters uptake pattern of organic and inorganic nitrogen by rubber trees.</title>
<author>
<name sortKey="Liu, Min" sort="Liu, Min" uniqKey="Liu M" first="Min" last="Liu">Min Liu</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Tropical Forest Ecology of Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing, China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>College of Resources and Environment, University of Chinese Academy of Sciences, Yanqi Lake, Huairou District, Beijing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Xu, Fanzhen" sort="Xu, Fanzhen" uniqKey="Xu F" first="Fanzhen" last="Xu">Fanzhen Xu</name>
<affiliation>
<nlm:affiliation>Laibin Academy of Agricultural Science, Renmin Road, Chengbei District, Laibin, Guangxi Province, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Xu, Xingliang" sort="Xu, Xingliang" uniqKey="Xu X" first="Xingliang" last="Xu">Xingliang Xu</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Tropical Forest Ecology of Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wanek, Wolfgang" sort="Wanek, Wolfgang" uniqKey="Wanek W" first="Wolfgang" last="Wanek">Wolfgang Wanek</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, Research Network 'Chemistry meets Microbiology', University of Vienna, Althanstrasse 14, Wien, Austria.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yang, Xiaodong" sort="Yang, Xiaodong" uniqKey="Yang X" first="Xiaodong" last="Yang">Xiaodong Yang</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Tropical Forest Ecology of Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Tree physiology</title>
<idno type="eISSN">1758-4469</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biological Transport (MeSH)</term>
<term>Hevea (growth & development)</term>
<term>Hevea (microbiology)</term>
<term>Hevea (physiology)</term>
<term>Inorganic Chemicals (metabolism)</term>
<term>Mycorrhizae (physiology)</term>
<term>Nitrogen (metabolism)</term>
<term>Organic Chemicals (metabolism)</term>
<term>Trees (growth & development)</term>
<term>Trees (microbiology)</term>
<term>Trees (physiology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Inorganic Chemicals</term>
<term>Nitrogen</term>
<term>Organic Chemicals</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Hevea</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Hevea</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Hevea</term>
<term>Mycorrhizae</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biological Transport</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Several studies have explored plant nutrient acquisition during ecosystem succession, but it remains unclear how age affects nitrogen (N) acquisition by the same tree species. Clarifying the age effect will be beneficial to fertilization management through improving N-use efficiency and reducing the risk of environmental pollution due to NO3- leaching. To clarify the effect of age on N uptake, rubber (Hevea brasiliensis (Willd. ex A. Juss.) Muell. Arg.) plantations of five ages (7, 16, 24, 32 and 49 years) were selected in Xishuangbanna of southern China for brief 15N exposures of intact roots using field hydroponic experiments. 15N-labeled NH4+, NO3- or glycine were applied in this study. All targeted rubber trees uptake rates followed an order of NH4+ > glycine > NO3-. As age increased, NH4+ uptake increased first and then decreased sharply, partly consistent with the pattern of soil NH4+ concentrations. Uptake of glycine decreased first and then increased gradually, while no significant change of NO3- uptake rates existed with increasing age. Overall, rubber trees with ages from 7 to 49 years all showed a preference for NH4+ uptake. Young rubber trees (7 and 16 years) had higher NH4+ and lower glycine preferences than older trees (24, 32 and 49 years). Mycorrhizal colonization rates of rubber trees were higher in intermediately aged plantations (16, 24 and 32 years) than in plantations aged 7 and 49 years. A positive relationship was observed between arbuscular mycorrhizal colonization rates and NO3- preference. The results from this study demonstrate that rubber trees do not change their preference for NH4+ but strongly decreased their reliance on it with age. These findings indicate that the shift of N uptake patterns with age should be taken into account for rubber fertilization management to improve N-use efficiency and reduce the risk of environmental pollution during rubber production.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29660099</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>02</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>02</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1758-4469</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>38</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2018</Year>
<Month>11</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Tree physiology</Title>
<ISOAbbreviation>Tree Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Age alters uptake pattern of organic and inorganic nitrogen by rubber trees.</ArticleTitle>
<Pagination>
<MedlinePgn>1685-1693</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/treephys/tpy031</ELocationID>
<Abstract>
<AbstractText>Several studies have explored plant nutrient acquisition during ecosystem succession, but it remains unclear how age affects nitrogen (N) acquisition by the same tree species. Clarifying the age effect will be beneficial to fertilization management through improving N-use efficiency and reducing the risk of environmental pollution due to NO3- leaching. To clarify the effect of age on N uptake, rubber (Hevea brasiliensis (Willd. ex A. Juss.) Muell. Arg.) plantations of five ages (7, 16, 24, 32 and 49 years) were selected in Xishuangbanna of southern China for brief 15N exposures of intact roots using field hydroponic experiments. 15N-labeled NH4+, NO3- or glycine were applied in this study. All targeted rubber trees uptake rates followed an order of NH4+ > glycine > NO3-. As age increased, NH4+ uptake increased first and then decreased sharply, partly consistent with the pattern of soil NH4+ concentrations. Uptake of glycine decreased first and then increased gradually, while no significant change of NO3- uptake rates existed with increasing age. Overall, rubber trees with ages from 7 to 49 years all showed a preference for NH4+ uptake. Young rubber trees (7 and 16 years) had higher NH4+ and lower glycine preferences than older trees (24, 32 and 49 years). Mycorrhizal colonization rates of rubber trees were higher in intermediately aged plantations (16, 24 and 32 years) than in plantations aged 7 and 49 years. A positive relationship was observed between arbuscular mycorrhizal colonization rates and NO3- preference. The results from this study demonstrate that rubber trees do not change their preference for NH4+ but strongly decreased their reliance on it with age. These findings indicate that the shift of N uptake patterns with age should be taken into account for rubber fertilization management to improve N-use efficiency and reduce the risk of environmental pollution during rubber production.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Min</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Tropical Forest Ecology of Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>College of Resources and Environment, University of Chinese Academy of Sciences, Yanqi Lake, Huairou District, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>Fanzhen</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Laibin Academy of Agricultural Science, Renmin Road, Chengbei District, Laibin, Guangxi Province, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>Xingliang</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Tropical Forest Ecology of Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wanek</LastName>
<ForeName>Wolfgang</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, Research Network 'Chemistry meets Microbiology', University of Vienna, Althanstrasse 14, Wien, Austria.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Xiaodong</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Tropical Forest Ecology of Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>Canada</Country>
<MedlineTA>Tree Physiol</MedlineTA>
<NlmUniqueID>100955338</NlmUniqueID>
<ISSNLinking>0829-318X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007287">Inorganic Chemicals</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009930">Organic Chemicals</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001692" MajorTopicYN="N">Biological Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D028482" MajorTopicYN="N">Hevea</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007287" MajorTopicYN="N">Inorganic Chemicals</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009930" MajorTopicYN="N">Organic Chemicals</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>09</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>02</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>4</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>2</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>4</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29660099</ArticleId>
<ArticleId IdType="pii">4961434</ArticleId>
<ArticleId IdType="doi">10.1093/treephys/tpy031</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000918 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000918 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:29660099
   |texte=   Age alters uptake pattern of organic and inorganic nitrogen by rubber trees.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:29660099" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020