Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Expression of putative circadian clock components in the arbuscular mycorrhizal fungus Rhizoglomus irregulare.

Identifieur interne : 000842 ( Main/Corpus ); précédent : 000841; suivant : 000843

Expression of putative circadian clock components in the arbuscular mycorrhizal fungus Rhizoglomus irregulare.

Auteurs : Soon-Jae Lee ; Mengxuan Kong ; David Morse ; Mohamed Hijri

Source :

RBID : pubmed:29931403

English descriptors

Abstract

Arbuscular mycorrhizal fungi (AMF) are obligatory plant symbionts that live underground, so few studies have examined their response to light. Responses to blue light by other fungi can be mediated by White Collar-1 (WC-1) and WC-2 proteins. These wc genes, together with the frequency gene (frq), also form part of the endogenous circadian clock. The clock mechanism has never been studied in AMF, although circadian growth of their hyphae in the field has been reported. Using both genomic and transcriptomic data, we have found homologs of wc-1, wc-2, and frq and related circadian clock genes in the arbuscular mycorrhizal fungus Rhizoglomus irregulare (synonym Rhizophagus irregularis). Gene expression of wc-1, wc-2, and frq was analyzed using RT-qPCR on RNA extracted from germinating spores and from fungal material cultivated in vitro with transformed carrot roots. We found that all three core clock genes were expressed in both pre- and post-mycorrhizal stages of R. irregulare growth. Similar to the model fungus Neurospora crassa, the core circadian oscillator gene frq was induced by brief light stimulation. The presence of circadian clock and output genes in R. irregulare opens the door to the study of circadian clocks in the fungal partner of plant-AMF symbiosis. Our finding also provides new insight into the evolution of the circadian frq gene in fungi.

DOI: 10.1007/s00572-018-0843-y
PubMed: 29931403

Links to Exploration step

pubmed:29931403

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Expression of putative circadian clock components in the arbuscular mycorrhizal fungus Rhizoglomus irregulare.</title>
<author>
<name sortKey="Lee, Soon Jae" sort="Lee, Soon Jae" uniqKey="Lee S" first="Soon-Jae" last="Lee">Soon-Jae Lee</name>
<affiliation>
<nlm:affiliation>Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, Québec, H1X 2B2, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kong, Mengxuan" sort="Kong, Mengxuan" uniqKey="Kong M" first="Mengxuan" last="Kong">Mengxuan Kong</name>
<affiliation>
<nlm:affiliation>Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, Québec, H1X 2B2, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Morse, David" sort="Morse, David" uniqKey="Morse D" first="David" last="Morse">David Morse</name>
<affiliation>
<nlm:affiliation>Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, Québec, H1X 2B2, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hijri, Mohamed" sort="Hijri, Mohamed" uniqKey="Hijri M" first="Mohamed" last="Hijri">Mohamed Hijri</name>
<affiliation>
<nlm:affiliation>Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, Québec, H1X 2B2, Canada. Mohamed.Hijri@umontreal.ca.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29931403</idno>
<idno type="pmid">29931403</idno>
<idno type="doi">10.1007/s00572-018-0843-y</idno>
<idno type="wicri:Area/Main/Corpus">000842</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000842</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Expression of putative circadian clock components in the arbuscular mycorrhizal fungus Rhizoglomus irregulare.</title>
<author>
<name sortKey="Lee, Soon Jae" sort="Lee, Soon Jae" uniqKey="Lee S" first="Soon-Jae" last="Lee">Soon-Jae Lee</name>
<affiliation>
<nlm:affiliation>Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, Québec, H1X 2B2, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kong, Mengxuan" sort="Kong, Mengxuan" uniqKey="Kong M" first="Mengxuan" last="Kong">Mengxuan Kong</name>
<affiliation>
<nlm:affiliation>Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, Québec, H1X 2B2, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Morse, David" sort="Morse, David" uniqKey="Morse D" first="David" last="Morse">David Morse</name>
<affiliation>
<nlm:affiliation>Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, Québec, H1X 2B2, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hijri, Mohamed" sort="Hijri, Mohamed" uniqKey="Hijri M" first="Mohamed" last="Hijri">Mohamed Hijri</name>
<affiliation>
<nlm:affiliation>Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, Québec, H1X 2B2, Canada. Mohamed.Hijri@umontreal.ca.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Mycorrhiza</title>
<idno type="eISSN">1432-1890</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Circadian Clocks (genetics)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Fungal Proteins (genetics)</term>
<term>Gene Expression Regulation, Fungal (MeSH)</term>
<term>Genes, Fungal (MeSH)</term>
<term>Light (MeSH)</term>
<term>Mycorrhizae (genetics)</term>
<term>Real-Time Polymerase Chain Reaction (MeSH)</term>
<term>Symbiosis (MeSH)</term>
<term>Transcriptome (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Fungal Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Circadian Clocks</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Evolution, Molecular</term>
<term>Gene Expression Regulation, Fungal</term>
<term>Genes, Fungal</term>
<term>Light</term>
<term>Real-Time Polymerase Chain Reaction</term>
<term>Symbiosis</term>
<term>Transcriptome</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Arbuscular mycorrhizal fungi (AMF) are obligatory plant symbionts that live underground, so few studies have examined their response to light. Responses to blue light by other fungi can be mediated by White Collar-1 (WC-1) and WC-2 proteins. These wc genes, together with the frequency gene (frq), also form part of the endogenous circadian clock. The clock mechanism has never been studied in AMF, although circadian growth of their hyphae in the field has been reported. Using both genomic and transcriptomic data, we have found homologs of wc-1, wc-2, and frq and related circadian clock genes in the arbuscular mycorrhizal fungus Rhizoglomus irregulare (synonym Rhizophagus irregularis). Gene expression of wc-1, wc-2, and frq was analyzed using RT-qPCR on RNA extracted from germinating spores and from fungal material cultivated in vitro with transformed carrot roots. We found that all three core clock genes were expressed in both pre- and post-mycorrhizal stages of R. irregulare growth. Similar to the model fungus Neurospora crassa, the core circadian oscillator gene frq was induced by brief light stimulation. The presence of circadian clock and output genes in R. irregulare opens the door to the study of circadian clocks in the fungal partner of plant-AMF symbiosis. Our finding also provides new insight into the evolution of the circadian frq gene in fungi.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29931403</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>04</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>04</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1890</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>28</Volume>
<Issue>5-6</Issue>
<PubDate>
<Year>2018</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Mycorrhiza</Title>
<ISOAbbreviation>Mycorrhiza</ISOAbbreviation>
</Journal>
<ArticleTitle>Expression of putative circadian clock components in the arbuscular mycorrhizal fungus Rhizoglomus irregulare.</ArticleTitle>
<Pagination>
<MedlinePgn>523-534</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00572-018-0843-y</ELocationID>
<Abstract>
<AbstractText>Arbuscular mycorrhizal fungi (AMF) are obligatory plant symbionts that live underground, so few studies have examined their response to light. Responses to blue light by other fungi can be mediated by White Collar-1 (WC-1) and WC-2 proteins. These wc genes, together with the frequency gene (frq), also form part of the endogenous circadian clock. The clock mechanism has never been studied in AMF, although circadian growth of their hyphae in the field has been reported. Using both genomic and transcriptomic data, we have found homologs of wc-1, wc-2, and frq and related circadian clock genes in the arbuscular mycorrhizal fungus Rhizoglomus irregulare (synonym Rhizophagus irregularis). Gene expression of wc-1, wc-2, and frq was analyzed using RT-qPCR on RNA extracted from germinating spores and from fungal material cultivated in vitro with transformed carrot roots. We found that all three core clock genes were expressed in both pre- and post-mycorrhizal stages of R. irregulare growth. Similar to the model fungus Neurospora crassa, the core circadian oscillator gene frq was induced by brief light stimulation. The presence of circadian clock and output genes in R. irregulare opens the door to the study of circadian clocks in the fungal partner of plant-AMF symbiosis. Our finding also provides new insight into the evolution of the circadian frq gene in fungi.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lee</LastName>
<ForeName>Soon-Jae</ForeName>
<Initials>SJ</Initials>
<AffiliationInfo>
<Affiliation>Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, Québec, H1X 2B2, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kong</LastName>
<ForeName>Mengxuan</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, Québec, H1X 2B2, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Morse</LastName>
<ForeName>David</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, Québec, H1X 2B2, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hijri</LastName>
<ForeName>Mohamed</ForeName>
<Initials>M</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0001-6112-8372</Identifier>
<AffiliationInfo>
<Affiliation>Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, Québec, H1X 2B2, Canada. Mohamed.Hijri@umontreal.ca.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>RGPIN-2018-04178</GrantID>
<Agency>Natural Sciences and Engineering Research Council of Canada</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>06</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Mycorrhiza</MedlineTA>
<NlmUniqueID>100955036</NlmUniqueID>
<ISSNLinking>0940-6360</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D057906" MajorTopicYN="N">Circadian Clocks</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="N">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="N">Gene Expression Regulation, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005800" MajorTopicYN="N">Genes, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008027" MajorTopicYN="N">Light</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060888" MajorTopicYN="N">Real-Time Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="N">Transcriptome</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Arbuscular mycorrhizal fungi (AMF)</Keyword>
<Keyword MajorTopicYN="N">Circadian clock</Keyword>
<Keyword MajorTopicYN="N">FRQ gene evolution</Keyword>
<Keyword MajorTopicYN="N">Light sensing</Keyword>
<Keyword MajorTopicYN="N">Symbiosis</Keyword>
<Keyword MajorTopicYN="N">White Collar</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>04</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>06</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>6</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>4</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>6</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29931403</ArticleId>
<ArticleId IdType="doi">10.1007/s00572-018-0843-y</ArticleId>
<ArticleId IdType="pii">10.1007/s00572-018-0843-y</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol. 2002 Jan;128(1):108-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11788757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2013 Oct;23(7):515-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23558516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2004 Sep-Oct;96(5):948-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21148915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2016 Sep;108(5):1028-1046</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27738200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2015 Jan;43(Database issue):D257-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25300481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Dec 2;111(48):16995-7002</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25362047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2010 Nov;47(11):881-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20451644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Reprod Nutr Dev. 1999 May-Jun;39(3):277-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10420431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2007 Feb;8(2):139-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17245414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2017 Jul;40(7):995-996</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28240779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2006 Oct;17(10):4576-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16914525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20117-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24277808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Apr;18(4):792-803</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16595397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1991 Jan 15;266(2):863-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1985968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Apr;146(4):1952-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18281417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2004 Aug 19;5:113</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15318951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Mikrobiol. 1954;20(1):1-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13139523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Physiol. 2001;63:757-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11181975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycol Res. 2007 May;111(Pt 5):509-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17572334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2010 Mar;184(3):651-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20026679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2005 Nov;42(11):887-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16154782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Mar 21;103(12):4546-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16537433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 May 16;4:134</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23720665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2006 Dec;9(6):566-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17067849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Feb;193(3):755-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22092242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IMA Fungus. 2011 Jun;2(1):25-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22679584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2011 Jun;34(6):877-894</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21332506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Aug 13;4:299</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23964281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2001 Jan 15;20(1-2):101-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11226160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2003 Apr;2(2):231-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12684372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2005 Apr;3(4):e95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15760278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2016 Oct;41(10):834-846</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27498225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Apr 15;27(8):1164-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21335321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1989 Jan 20;243(4889):385-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2563175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2008 May;45(5):705-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18203635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2018 Jan 1;10(1):328-343</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29329439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2016 May;90:39-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26498192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2010 Mar-Apr;102(2):269-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20361495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2010;64:585-610</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20533875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Apr;17(4):1120-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15749755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2006 Aug;5(8):1184-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16896204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Oct;200(2):547-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23844990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2011 Sep 2;43(5):713-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21884974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2004 Jul;41(7):688-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15275664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2002 Feb;1(1):33-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12455969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Spectr. 2017 May;5(3):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28527179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2012;3:1112</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23047670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycol Res. 2003 Sep;107(Pt 9):1075-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14563135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13096-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8917550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Biol. 2010 May;59(3):307-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20525638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Dec 19;322(5909):1832-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19095940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2011;694:37-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21082426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2012 Sep;29(9):2199-210</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22411852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1991 May 24;252(5009):1162-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2031185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2016 Jan 4;44(D1):D286-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26582926</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000842 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000842 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:29931403
   |texte=   Expression of putative circadian clock components in the arbuscular mycorrhizal fungus Rhizoglomus irregulare.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:29931403" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020