Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Network hubs in root-associated fungal metacommunities.

Identifieur interne : 000835 ( Main/Corpus ); précédent : 000834; suivant : 000836

Network hubs in root-associated fungal metacommunities.

Auteurs : Hirokazu Toju ; Akifumi S. Tanabe ; Hirotoshi Sato

Source :

RBID : pubmed:29935536

English descriptors

Abstract

BACKGROUND

Although a number of recent studies have uncovered remarkable diversity of microbes associated with plants, understanding and managing dynamics of plant microbiomes remain major scientific challenges. In this respect, network analytical methods have provided a basis for exploring "hub" microbial species, which potentially organize community-scale processes of plant-microbe interactions.

METHODS

By compiling Illumina sequencing data of root-associated fungi in eight forest ecosystems across the Japanese Archipelago, we explored hubs within "metacommunity-scale" networks of plant-fungus associations. In total, the metadata included 8080 fungal operational taxonomic units (OTUs) detected from 227 local populations of 150 plant species/taxa.

RESULTS

Few fungal OTUs were common across all the eight forests. However, in each of the metacommunity-scale networks representing northern four localities or southern four localities, diverse mycorrhizal, endophytic, and pathogenic fungi were classified as "metacommunity hubs," which were detected from diverse host plant taxa throughout a climatic region. Specifically, Mortierella (Mortierellales), Cladophialophora (Chaetothyriales), Ilyonectria (Hypocreales), Pezicula (Helotiales), and Cadophora (incertae sedis) had broad geographic and host ranges across the northern (cool-temperate) region, while Saitozyma/Cryptococcus (Tremellales/Trichosporonales) and Mortierella as well as some arbuscular mycorrhizal fungi were placed at the central positions of the metacommunity-scale network representing warm-temperate and subtropical forests in southern Japan.

CONCLUSIONS

The network theoretical framework presented in this study will help us explore prospective fungi and bacteria, which have high potentials for agricultural application to diverse plant species within each climatic region. As some of those fungal taxa with broad geographic and host ranges have been known to promote the survival and growth of host plants, further studies elucidating their functional roles are awaited.


DOI: 10.1186/s40168-018-0497-1
PubMed: 29935536
PubMed Central: PMC6015470

Links to Exploration step

pubmed:29935536

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Network hubs in root-associated fungal metacommunities.</title>
<author>
<name sortKey="Toju, Hirokazu" sort="Toju, Hirokazu" uniqKey="Toju H" first="Hirokazu" last="Toju">Hirokazu Toju</name>
<affiliation>
<nlm:affiliation>Center for Ecological Research, Kyoto University, Otsu, Shiga, 520-2113, Japan. toju.hirokazu.4c@kyoto-u.ac.jp.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Saitama, 332-0012, Japan. toju.hirokazu.4c@kyoto-u.ac.jp.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tanabe, Akifumi S" sort="Tanabe, Akifumi S" uniqKey="Tanabe A" first="Akifumi S" last="Tanabe">Akifumi S. Tanabe</name>
<affiliation>
<nlm:affiliation>Faculty of Science and Technology, Ryukoku University, Seta Oe, Otsu, Shiga, 520-2194, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sato, Hirotoshi" sort="Sato, Hirotoshi" uniqKey="Sato H" first="Hirotoshi" last="Sato">Hirotoshi Sato</name>
<affiliation>
<nlm:affiliation>Graduate School of Human and Environmental Studies, Kyoto University, Sakyo, Kyoto, 606-8501, Japan.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29935536</idno>
<idno type="pmid">29935536</idno>
<idno type="doi">10.1186/s40168-018-0497-1</idno>
<idno type="pmc">PMC6015470</idno>
<idno type="wicri:Area/Main/Corpus">000835</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000835</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Network hubs in root-associated fungal metacommunities.</title>
<author>
<name sortKey="Toju, Hirokazu" sort="Toju, Hirokazu" uniqKey="Toju H" first="Hirokazu" last="Toju">Hirokazu Toju</name>
<affiliation>
<nlm:affiliation>Center for Ecological Research, Kyoto University, Otsu, Shiga, 520-2113, Japan. toju.hirokazu.4c@kyoto-u.ac.jp.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Saitama, 332-0012, Japan. toju.hirokazu.4c@kyoto-u.ac.jp.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tanabe, Akifumi S" sort="Tanabe, Akifumi S" uniqKey="Tanabe A" first="Akifumi S" last="Tanabe">Akifumi S. Tanabe</name>
<affiliation>
<nlm:affiliation>Faculty of Science and Technology, Ryukoku University, Seta Oe, Otsu, Shiga, 520-2194, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sato, Hirotoshi" sort="Sato, Hirotoshi" uniqKey="Sato H" first="Hirotoshi" last="Sato">Hirotoshi Sato</name>
<affiliation>
<nlm:affiliation>Graduate School of Human and Environmental Studies, Kyoto University, Sakyo, Kyoto, 606-8501, Japan.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Microbiome</title>
<idno type="eISSN">2049-2618</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Base Sequence (MeSH)</term>
<term>Biodiversity (MeSH)</term>
<term>DNA, Fungal (genetics)</term>
<term>Endophytes (classification)</term>
<term>Endophytes (genetics)</term>
<term>Endophytes (isolation & purification)</term>
<term>Forests (MeSH)</term>
<term>Fungi (classification)</term>
<term>Fungi (genetics)</term>
<term>Fungi (isolation & purification)</term>
<term>Host Specificity (MeSH)</term>
<term>Japan (MeSH)</term>
<term>Microbiota (genetics)</term>
<term>Mycorrhizae (physiology)</term>
<term>Plant Roots (microbiology)</term>
<term>Plants (microbiology)</term>
<term>Sequence Analysis, DNA (MeSH)</term>
<term>Soil Microbiology (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Fungal</term>
</keywords>
<keywords scheme="MESH" type="geographic" xml:lang="en">
<term>Japan</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Endophytes</term>
<term>Fungi</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Endophytes</term>
<term>Fungi</term>
<term>Microbiota</term>
</keywords>
<keywords scheme="MESH" qualifier="isolation & purification" xml:lang="en">
<term>Endophytes</term>
<term>Fungi</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Roots</term>
<term>Plants</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Sequence</term>
<term>Biodiversity</term>
<term>Forests</term>
<term>Host Specificity</term>
<term>Sequence Analysis, DNA</term>
<term>Soil Microbiology</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Although a number of recent studies have uncovered remarkable diversity of microbes associated with plants, understanding and managing dynamics of plant microbiomes remain major scientific challenges. In this respect, network analytical methods have provided a basis for exploring "hub" microbial species, which potentially organize community-scale processes of plant-microbe interactions.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>METHODS</b>
</p>
<p>By compiling Illumina sequencing data of root-associated fungi in eight forest ecosystems across the Japanese Archipelago, we explored hubs within "metacommunity-scale" networks of plant-fungus associations. In total, the metadata included 8080 fungal operational taxonomic units (OTUs) detected from 227 local populations of 150 plant species/taxa.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Few fungal OTUs were common across all the eight forests. However, in each of the metacommunity-scale networks representing northern four localities or southern four localities, diverse mycorrhizal, endophytic, and pathogenic fungi were classified as "metacommunity hubs," which were detected from diverse host plant taxa throughout a climatic region. Specifically, Mortierella (Mortierellales), Cladophialophora (Chaetothyriales), Ilyonectria (Hypocreales), Pezicula (Helotiales), and Cadophora (incertae sedis) had broad geographic and host ranges across the northern (cool-temperate) region, while Saitozyma/Cryptococcus (Tremellales/Trichosporonales) and Mortierella as well as some arbuscular mycorrhizal fungi were placed at the central positions of the metacommunity-scale network representing warm-temperate and subtropical forests in southern Japan.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>The network theoretical framework presented in this study will help us explore prospective fungi and bacteria, which have high potentials for agricultural application to diverse plant species within each climatic region. As some of those fungal taxa with broad geographic and host ranges have been known to promote the survival and growth of host plants, further studies elucidating their functional roles are awaited.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29935536</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>01</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2049-2618</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>6</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2018</Year>
<Month>06</Month>
<Day>23</Day>
</PubDate>
</JournalIssue>
<Title>Microbiome</Title>
<ISOAbbreviation>Microbiome</ISOAbbreviation>
</Journal>
<ArticleTitle>Network hubs in root-associated fungal metacommunities.</ArticleTitle>
<Pagination>
<MedlinePgn>116</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s40168-018-0497-1</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND">Although a number of recent studies have uncovered remarkable diversity of microbes associated with plants, understanding and managing dynamics of plant microbiomes remain major scientific challenges. In this respect, network analytical methods have provided a basis for exploring "hub" microbial species, which potentially organize community-scale processes of plant-microbe interactions.</AbstractText>
<AbstractText Label="METHODS">By compiling Illumina sequencing data of root-associated fungi in eight forest ecosystems across the Japanese Archipelago, we explored hubs within "metacommunity-scale" networks of plant-fungus associations. In total, the metadata included 8080 fungal operational taxonomic units (OTUs) detected from 227 local populations of 150 plant species/taxa.</AbstractText>
<AbstractText Label="RESULTS">Few fungal OTUs were common across all the eight forests. However, in each of the metacommunity-scale networks representing northern four localities or southern four localities, diverse mycorrhizal, endophytic, and pathogenic fungi were classified as "metacommunity hubs," which were detected from diverse host plant taxa throughout a climatic region. Specifically, Mortierella (Mortierellales), Cladophialophora (Chaetothyriales), Ilyonectria (Hypocreales), Pezicula (Helotiales), and Cadophora (incertae sedis) had broad geographic and host ranges across the northern (cool-temperate) region, while Saitozyma/Cryptococcus (Tremellales/Trichosporonales) and Mortierella as well as some arbuscular mycorrhizal fungi were placed at the central positions of the metacommunity-scale network representing warm-temperate and subtropical forests in southern Japan.</AbstractText>
<AbstractText Label="CONCLUSIONS">The network theoretical framework presented in this study will help us explore prospective fungi and bacteria, which have high potentials for agricultural application to diverse plant species within each climatic region. As some of those fungal taxa with broad geographic and host ranges have been known to promote the survival and growth of host plants, further studies elucidating their functional roles are awaited.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Toju</LastName>
<ForeName>Hirokazu</ForeName>
<Initials>H</Initials>
<Identifier Source="ORCID">0000-0002-3362-3285</Identifier>
<AffiliationInfo>
<Affiliation>Center for Ecological Research, Kyoto University, Otsu, Shiga, 520-2113, Japan. toju.hirokazu.4c@kyoto-u.ac.jp.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Saitama, 332-0012, Japan. toju.hirokazu.4c@kyoto-u.ac.jp.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tanabe</LastName>
<ForeName>Akifumi S</ForeName>
<Initials>AS</Initials>
<AffiliationInfo>
<Affiliation>Faculty of Science and Technology, Ryukoku University, Seta Oe, Otsu, Shiga, 520-2194, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sato</LastName>
<ForeName>Hirotoshi</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Graduate School of Human and Environmental Studies, Kyoto University, Sakyo, Kyoto, 606-8501, Japan.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>06</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Microbiome</MedlineTA>
<NlmUniqueID>101615147</NlmUniqueID>
<ISSNLinking>2049-2618</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004271">DNA, Fungal</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044822" MajorTopicYN="N">Biodiversity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004271" MajorTopicYN="N">DNA, Fungal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060026" MajorTopicYN="N">Endophytes</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="Y">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D065928" MajorTopicYN="N">Forests</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005658" MajorTopicYN="N">Fungi</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="Y">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058507" MajorTopicYN="N">Host Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007564" MajorTopicYN="N" Type="Geographic">Japan</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064307" MajorTopicYN="N">Microbiota</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010944" MajorTopicYN="N">Plants</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="N">Soil Microbiology</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Agriculture</Keyword>
<Keyword MajorTopicYN="Y">Biodiversity</Keyword>
<Keyword MajorTopicYN="Y">Ecosystem restoration</Keyword>
<Keyword MajorTopicYN="Y">Host specificity or preference</Keyword>
<Keyword MajorTopicYN="Y">Latitudinal gradients</Keyword>
<Keyword MajorTopicYN="Y">Metacommunities</Keyword>
<Keyword MajorTopicYN="Y">Microbial inoculation</Keyword>
<Keyword MajorTopicYN="Y">Mycorrhizal and endophytic symbiosis</Keyword>
<Keyword MajorTopicYN="Y">Network hubs</Keyword>
<Keyword MajorTopicYN="Y">Plant–fungus interactions</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>02</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>06</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>6</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>6</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>1</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29935536</ArticleId>
<ArticleId IdType="doi">10.1186/s40168-018-0497-1</ArticleId>
<ArticleId IdType="pii">10.1186/s40168-018-0497-1</ArticleId>
<ArticleId IdType="pmc">PMC6015470</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Microb Ecol. 2011 Feb;61(2):239-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20842497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Aug 2;488(7409):86-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22859206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Adv. 2015 Oct 23;1(9):e1500291</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26601279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2011;49:291-315</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19400639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9383-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12881488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Extremophiles. 2014 Jan;18(1):15-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24126742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Jun 11;304(5677):1629-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15192218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15649-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14671327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2012 Jul 16;10(8):538-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22796884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2014 Jun 13;344(6189):1289-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24926021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2011 Mar;24(3):336-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21091159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Mar 14;299(5613):1735-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12637745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Biol. 2014 Aug;118(8):683-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25110131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Jun 10;9(6):e98679</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24914678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Apr 29;111(17):6341-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24733885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2014 Oct 20;5:5273</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25327887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 May;190(3):783-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21244432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2004 Mar;4(6):597-603</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15040947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Jun;194(4):891-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22537105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2016 Jul;13(7):581-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27214047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 1999 Aug;145 ( Pt 8):1919-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10463158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2012 Aug;17(8):478-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22564542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2016 Jul;25(13):3242-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27136380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J R Soc Interface. 2016 Mar;13(116):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26962029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;169(1):169-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16390428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2006 Apr;8(4):755-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16584487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Basic Microbiol. 2009 Oct;49(5):441-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19798655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2005 Sep;71(9):5544-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16151147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Sep 20;102(38):13386-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16174735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Ecol Evol. 2017 Jan 24;1(2):24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28812622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Dec 17;8(12):e83241</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24358265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2015 May 07;11(5):e1004226</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25950956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Jun 14;411(6839):789-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11459055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2009 May;57(4):624-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18958514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(7):e40863</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22808280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2018 May;4(5):247-257</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29725101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 1990;28:139-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20540608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2012 Aug;21(16):4122-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22703050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biometrics. 2006 Mar;62(1):245-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16542252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2015 Aug;18(8):807-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26032408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2017 Mar 28;15(3):e2001793</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28350798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2007 Nov;276(1):1-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17711454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiome. 2017 Jan 17;5(1):2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28095877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2015 Dec 17;528(7582):364-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26633631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Ecol. 2006 Aug 14;6:9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16907983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2006 Feb;4(2):102-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16415926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2017 Feb;93(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27789535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2008 Mar;11(3):296-310</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18047587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2007 Mar;17(3):377-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17255551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Mar 1;295(5560):1662-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11872829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2016 Jul;14(7):434-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27296482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2004 Aug;14(4):277-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15221579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2013 Sep;31(9):814-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23975157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 1999 May;153(S5):S48-S60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29578776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2016 Jan 20;14(1):e1002352</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26788878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2009 Dec;11(12):3166-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19671076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2015 Mar;28(3):212-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25514681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2005 Jan;15(1):61-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15517420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Feb 28;9(2):e90234</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24587293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2010 Feb;175(2):E16-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20059366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Jul 27;406(6794):378-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10935628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2005 Nov 15;252(2):191-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16168582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2013 Dec;64(18):5687-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24127517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Jul 26;297(5581):537-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12142520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2013 Nov;22(21):5271-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24112409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Feb 24;112(8):E911-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25605935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stud Mycol. 2015 Jun;81:85-147</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26955199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Oct 31;114(44):E9403-E9412</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28973917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Oct;184(2):449-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19703112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Oct 18;8(10):e76910</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24204702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2016 Jun;25(12):2816-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27092961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Oct;188(1):223-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20561207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2014 Nov 28;346(6213):1256688</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25430773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2016 Apr 7;165(2):464-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26997485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Jul 20;442(7100):265-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16855582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2007 Mar-Apr;99(2):175-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17682770</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000835 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000835 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:29935536
   |texte=   Network hubs in root-associated fungal metacommunities.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:29935536" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020