Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

AM fungi facilitate the competitive growth of two invasive plant species, Ambrosia artemisiifolia and Bidens pilosa.

Identifieur interne : 000745 ( Main/Corpus ); précédent : 000744; suivant : 000746

AM fungi facilitate the competitive growth of two invasive plant species, Ambrosia artemisiifolia and Bidens pilosa.

Auteurs : Fengjuan Zhang ; Qiao Li ; Ellen Heininger Yerger ; Xue Chen ; Qing Shi ; Fanghao Wan

Source :

RBID : pubmed:30220052

English descriptors

Abstract

Invasive species often cause enormous economic and ecological damage, and this is especially true for invasive plants in the Asteraceae family. Arbuscular mycorrhizal fungi (AMF) play an important role in the successful invasion by exotic plant species because of their ability to promote growth and influence interspecific competition. However, few studies have evaluated the effects of invasive Asteraceae species on AMF diversity and how feedback mechanisms during competition with native species subsequently affect the accumulation of nutrient resources. Two exotic Asteraceae, Ambrosia artemisiifolia and Bidens pilosa, were monitored during competition with a native grass species, Setaria viridis, which is being replaced by these exotic species in natural areas around the study site. From these species continuously maintained in a field plot for 5 years, we collected the rhizosphere soil and cloned and identified soil AMF. Furthermore, AM fungal spores were isolated from rhizosphere soil of the two invasive species and used as inoculum in greenhouse experiments, to compare growth and nutrient accumulation during competition. The results indicate that although the AMF diversity in the rhizosphere soil of A. artemisiifolia and B. pilosa differed, the three most abundant species (Septoglomus viscosum, Septoglomus constrictum, Glomus perpusillum) were identical. The addition of AMF inoculum changed the competition between the plants, increasing the competitive ability of the invasives and decreasing that of the native. The results show a similar AMF community composition between A. artemisiifolia and B. pilosa, increased AMF root colonization of the invasive species during competition, AMF-enhanced N accumulation, and AMF-facilitated competitive growth of the invasive species.

DOI: 10.1007/s00572-018-0866-4
PubMed: 30220052

Links to Exploration step

pubmed:30220052

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">AM fungi facilitate the competitive growth of two invasive plant species, Ambrosia artemisiifolia and Bidens pilosa.</title>
<author>
<name sortKey="Zhang, Fengjuan" sort="Zhang, Fengjuan" uniqKey="Zhang F" first="Fengjuan" last="Zhang">Fengjuan Zhang</name>
<affiliation>
<nlm:affiliation>College of Life Science, Hebei University, 180 Wusi East, Baoding, 071002, Hebei Province, China. fengjuanzhang@126.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Qiao" sort="Li, Qiao" uniqKey="Li Q" first="Qiao" last="Li">Qiao Li</name>
<affiliation>
<nlm:affiliation>College of Plant Protection, Hunan Agricultural University, Changsha, 410128, Hunan Province, China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection Chinese Academy of Agricultural Sciences, Beijing, 100081, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yerger, Ellen Heininger" sort="Yerger, Ellen Heininger" uniqKey="Yerger E" first="Ellen Heininger" last="Yerger">Ellen Heininger Yerger</name>
<affiliation>
<nlm:affiliation>Department of Biology, Indiana University of Pennsylvania, Indiana, PA, 15705, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Xue" sort="Chen, Xue" uniqKey="Chen X" first="Xue" last="Chen">Xue Chen</name>
<affiliation>
<nlm:affiliation>Department of Biology, Huihua College of Hebei Normal University, Shijiazhuang, 050091, Hebei Province, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shi, Qing" sort="Shi, Qing" uniqKey="Shi Q" first="Qing" last="Shi">Qing Shi</name>
<affiliation>
<nlm:affiliation>College of Life Science, Hebei University, 180 Wusi East, Baoding, 071002, Hebei Province, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wan, Fanghao" sort="Wan, Fanghao" uniqKey="Wan F" first="Fanghao" last="Wan">Fanghao Wan</name>
<affiliation>
<nlm:affiliation>State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection Chinese Academy of Agricultural Sciences, Beijing, 100081, China. wanfanghaocaas@163.com.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30220052</idno>
<idno type="pmid">30220052</idno>
<idno type="doi">10.1007/s00572-018-0866-4</idno>
<idno type="wicri:Area/Main/Corpus">000745</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000745</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">AM fungi facilitate the competitive growth of two invasive plant species, Ambrosia artemisiifolia and Bidens pilosa.</title>
<author>
<name sortKey="Zhang, Fengjuan" sort="Zhang, Fengjuan" uniqKey="Zhang F" first="Fengjuan" last="Zhang">Fengjuan Zhang</name>
<affiliation>
<nlm:affiliation>College of Life Science, Hebei University, 180 Wusi East, Baoding, 071002, Hebei Province, China. fengjuanzhang@126.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Qiao" sort="Li, Qiao" uniqKey="Li Q" first="Qiao" last="Li">Qiao Li</name>
<affiliation>
<nlm:affiliation>College of Plant Protection, Hunan Agricultural University, Changsha, 410128, Hunan Province, China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection Chinese Academy of Agricultural Sciences, Beijing, 100081, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yerger, Ellen Heininger" sort="Yerger, Ellen Heininger" uniqKey="Yerger E" first="Ellen Heininger" last="Yerger">Ellen Heininger Yerger</name>
<affiliation>
<nlm:affiliation>Department of Biology, Indiana University of Pennsylvania, Indiana, PA, 15705, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Xue" sort="Chen, Xue" uniqKey="Chen X" first="Xue" last="Chen">Xue Chen</name>
<affiliation>
<nlm:affiliation>Department of Biology, Huihua College of Hebei Normal University, Shijiazhuang, 050091, Hebei Province, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shi, Qing" sort="Shi, Qing" uniqKey="Shi Q" first="Qing" last="Shi">Qing Shi</name>
<affiliation>
<nlm:affiliation>College of Life Science, Hebei University, 180 Wusi East, Baoding, 071002, Hebei Province, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wan, Fanghao" sort="Wan, Fanghao" uniqKey="Wan F" first="Fanghao" last="Wan">Fanghao Wan</name>
<affiliation>
<nlm:affiliation>State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection Chinese Academy of Agricultural Sciences, Beijing, 100081, China. wanfanghaocaas@163.com.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Mycorrhiza</title>
<idno type="eISSN">1432-1890</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Ambrosia (growth & development)</term>
<term>Ambrosia (microbiology)</term>
<term>Bidens (growth & development)</term>
<term>Bidens (microbiology)</term>
<term>China (MeSH)</term>
<term>Glomeromycota (physiology)</term>
<term>Introduced Species (MeSH)</term>
<term>Mycorrhizae (physiology)</term>
<term>Setaria Plant (growth & development)</term>
<term>Soil Microbiology (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Ambrosia</term>
<term>Bidens</term>
<term>Setaria Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Ambrosia</term>
<term>Bidens</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Glomeromycota</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>China</term>
<term>Introduced Species</term>
<term>Soil Microbiology</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Invasive species often cause enormous economic and ecological damage, and this is especially true for invasive plants in the Asteraceae family. Arbuscular mycorrhizal fungi (AMF) play an important role in the successful invasion by exotic plant species because of their ability to promote growth and influence interspecific competition. However, few studies have evaluated the effects of invasive Asteraceae species on AMF diversity and how feedback mechanisms during competition with native species subsequently affect the accumulation of nutrient resources. Two exotic Asteraceae, Ambrosia artemisiifolia and Bidens pilosa, were monitored during competition with a native grass species, Setaria viridis, which is being replaced by these exotic species in natural areas around the study site. From these species continuously maintained in a field plot for 5 years, we collected the rhizosphere soil and cloned and identified soil AMF. Furthermore, AM fungal spores were isolated from rhizosphere soil of the two invasive species and used as inoculum in greenhouse experiments, to compare growth and nutrient accumulation during competition. The results indicate that although the AMF diversity in the rhizosphere soil of A. artemisiifolia and B. pilosa differed, the three most abundant species (Septoglomus viscosum, Septoglomus constrictum, Glomus perpusillum) were identical. The addition of AMF inoculum changed the competition between the plants, increasing the competitive ability of the invasives and decreasing that of the native. The results show a similar AMF community composition between A. artemisiifolia and B. pilosa, increased AMF root colonization of the invasive species during competition, AMF-enhanced N accumulation, and AMF-facilitated competitive growth of the invasive species.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30220052</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>12</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>11</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1890</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>28</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2018</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Mycorrhiza</Title>
<ISOAbbreviation>Mycorrhiza</ISOAbbreviation>
</Journal>
<ArticleTitle>AM fungi facilitate the competitive growth of two invasive plant species, Ambrosia artemisiifolia and Bidens pilosa.</ArticleTitle>
<Pagination>
<MedlinePgn>703-715</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00572-018-0866-4</ELocationID>
<Abstract>
<AbstractText>Invasive species often cause enormous economic and ecological damage, and this is especially true for invasive plants in the Asteraceae family. Arbuscular mycorrhizal fungi (AMF) play an important role in the successful invasion by exotic plant species because of their ability to promote growth and influence interspecific competition. However, few studies have evaluated the effects of invasive Asteraceae species on AMF diversity and how feedback mechanisms during competition with native species subsequently affect the accumulation of nutrient resources. Two exotic Asteraceae, Ambrosia artemisiifolia and Bidens pilosa, were monitored during competition with a native grass species, Setaria viridis, which is being replaced by these exotic species in natural areas around the study site. From these species continuously maintained in a field plot for 5 years, we collected the rhizosphere soil and cloned and identified soil AMF. Furthermore, AM fungal spores were isolated from rhizosphere soil of the two invasive species and used as inoculum in greenhouse experiments, to compare growth and nutrient accumulation during competition. The results indicate that although the AMF diversity in the rhizosphere soil of A. artemisiifolia and B. pilosa differed, the three most abundant species (Septoglomus viscosum, Septoglomus constrictum, Glomus perpusillum) were identical. The addition of AMF inoculum changed the competition between the plants, increasing the competitive ability of the invasives and decreasing that of the native. The results show a similar AMF community composition between A. artemisiifolia and B. pilosa, increased AMF root colonization of the invasive species during competition, AMF-enhanced N accumulation, and AMF-facilitated competitive growth of the invasive species.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Fengjuan</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>College of Life Science, Hebei University, 180 Wusi East, Baoding, 071002, Hebei Province, China. fengjuanzhang@126.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Qiao</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>College of Plant Protection, Hunan Agricultural University, Changsha, 410128, Hunan Province, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection Chinese Academy of Agricultural Sciences, Beijing, 100081, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yerger</LastName>
<ForeName>Ellen Heininger</ForeName>
<Initials>EH</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Indiana University of Pennsylvania, Indiana, PA, 15705, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Xue</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Huihua College of Hebei Normal University, Shijiazhuang, 050091, Hebei Province, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shi</LastName>
<ForeName>Qing</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>College of Life Science, Hebei University, 180 Wusi East, Baoding, 071002, Hebei Province, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wan</LastName>
<ForeName>Fanghao</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection Chinese Academy of Agricultural Sciences, Beijing, 100081, China. wanfanghaocaas@163.com.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>31372000</GrantID>
<Agency>National Natural Science Foundation of China</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>C2015201021</GrantID>
<Agency>Hebei National Natural Science Foundation</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>C2015201241</GrantID>
<Agency>Hebei National Natural Science Foundation</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>ZD2016039</GrantID>
<Agency>Department of Education Project</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>31171906</GrantID>
<Agency>National Natural Science Foundation of China</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>09</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Mycorrhiza</MedlineTA>
<NlmUniqueID>100955036</NlmUniqueID>
<ISSNLinking>0940-6360</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D031164" MajorTopicYN="N">Ambrosia</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D031176" MajorTopicYN="N">Bidens</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002681" MajorTopicYN="N">China</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055137" MajorTopicYN="N">Glomeromycota</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058865" MajorTopicYN="N">Introduced Species</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032983" MajorTopicYN="N">Setaria Plant</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="Y">Soil Microbiology</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Arbuscular mycorrhizal fungi</Keyword>
<Keyword MajorTopicYN="N">Asteraceae</Keyword>
<Keyword MajorTopicYN="N">Interspecific competition</Keyword>
<Keyword MajorTopicYN="N">Invasive species</Keyword>
<Keyword MajorTopicYN="N">Soil nutrients</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>05</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>09</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>9</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>12</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>9</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30220052</ArticleId>
<ArticleId IdType="doi">10.1007/s00572-018-0866-4</ArticleId>
<ArticleId IdType="pii">10.1007/s00572-018-0866-4</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Appl Environ Microbiol. 1992 Jan;58(1):291-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1339260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2005 May;20(5):223-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16701373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2011 Oct;14(10):1001-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21790936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2017 Jan;98(1):92-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27935020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 1994 Jun;20(6):1355-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24242343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;181(1):199-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18811615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2013 Dec;30(12):2725-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24132122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Aug 12;333(6044):880-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21836016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010 Nov 03;5(11):e15418</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21082028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2010 Mar;13(3):394-407</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20100237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2006 May;4(5):e140</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16623597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2016 Jun 10;16(1):122</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27287440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2011 May;21(4):309-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20922434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Conserv Biol. 2015 Apr;29(2):360-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25369762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2006 Dec;17(1):25-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17043894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2013 Jul;7(7):1424-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23486251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2013 Nov;22(21):5472-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24118244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol. 2013 Jun;51(3):295-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23812808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Rev Camb Philos Soc. 2000 Feb;75(1):65-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10740893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Allergy. 2012 Jul;67(7):887-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22582710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2011 Jan;98(1):38-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21613083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2015 Sep;96(9):2336-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26594692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Jul;203(1):233-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24641509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Oct;168(1):189-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16159333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2010 Feb;13(2):235-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20002494</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000745 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000745 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:30220052
   |texte=   AM fungi facilitate the competitive growth of two invasive plant species, Ambrosia artemisiifolia and Bidens pilosa.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:30220052" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020