Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transcriptome responses in wheat roots to colonization by the arbuscular mycorrhizal fungus Rhizophagus irregularis.

Identifieur interne : 000733 ( Main/Corpus ); précédent : 000732; suivant : 000734

Transcriptome responses in wheat roots to colonization by the arbuscular mycorrhizal fungus Rhizophagus irregularis.

Auteurs : Mengjiao Li ; Runze Wang ; Hui Tian ; Yajun Gao

Source :

RBID : pubmed:30251133

English descriptors

Abstract

The influence of arbuscular mycorrhizal (AM) colonization on the expression of genes in the roots of wheat (Triticum aestivum L.) at the transcriptome level is largely unknown. A pot experiment was established to study the responses of the transcriptome profile in the roots of wheat to colonization by the AM fungus Rhizophagus irregularis using high through-put sequencing methods. The results indicated that the expression of 11,746 genes was regulated by AM colonization, and 64.7% of them were up-regulated genes. 1106 genes were only expressed in roots colonized by AM fungi, and 108 genes were only expressed in non-mycorrhizal roots. The differentially expressed genes (DEGs) were primarily distributed on the 2B, 3B, 2A, 2D, and 5B chromosomes of wheat. The DEGs (including both up- and down- regulated) mainly located on membranes, and functioned in nucleotide binding and transferase activity during cellular protein modification and biosynthetic processes. The data revealed that AM colonization up-regulated genes involved in the phenylpropanoid biosynthesis pathway and transcription factors which play vital roles in protecting plants from biotic or abiotic stresses. A number of key genes involved in molecular signal biosynthesis and recognition, epidermal cell colonization and arbuscule formation, carbon and nutrients exchange during AM symbiosis were found. All the ammonium transporter (AMT), iron-phytosiderophore transporter, boron, zinc, and magnesium transporter genes found in our study were up-regulated DEGs. One new AM-specific induced AMT and three new AM-specific induced nitrate transporter (NRT) genes were found in the roots of wheat colonized by AM fungi, even though a negative growth response of wheat to AM colonization occurred. The present study provided new information which is important for understanding the mechanisms behind the development and function of the symbiosis between wheat and AM fungi.

DOI: 10.1007/s00572-018-0868-2
PubMed: 30251133

Links to Exploration step

pubmed:30251133

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Transcriptome responses in wheat roots to colonization by the arbuscular mycorrhizal fungus Rhizophagus irregularis.</title>
<author>
<name sortKey="Li, Mengjiao" sort="Li, Mengjiao" uniqKey="Li M" first="Mengjiao" last="Li">Mengjiao Li</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Runze" sort="Wang, Runze" uniqKey="Wang R" first="Runze" last="Wang">Runze Wang</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tian, Hui" sort="Tian, Hui" uniqKey="Tian H" first="Hui" last="Tian">Hui Tian</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China. tianh@nwsuaf.edu.cn.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gao, Yajun" sort="Gao, Yajun" uniqKey="Gao Y" first="Yajun" last="Gao">Yajun Gao</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30251133</idno>
<idno type="pmid">30251133</idno>
<idno type="doi">10.1007/s00572-018-0868-2</idno>
<idno type="wicri:Area/Main/Corpus">000733</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000733</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Transcriptome responses in wheat roots to colonization by the arbuscular mycorrhizal fungus Rhizophagus irregularis.</title>
<author>
<name sortKey="Li, Mengjiao" sort="Li, Mengjiao" uniqKey="Li M" first="Mengjiao" last="Li">Mengjiao Li</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Runze" sort="Wang, Runze" uniqKey="Wang R" first="Runze" last="Wang">Runze Wang</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tian, Hui" sort="Tian, Hui" uniqKey="Tian H" first="Hui" last="Tian">Hui Tian</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China. tianh@nwsuaf.edu.cn.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gao, Yajun" sort="Gao, Yajun" uniqKey="Gao Y" first="Yajun" last="Gao">Yajun Gao</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Mycorrhiza</title>
<idno type="eISSN">1432-1890</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Glomeromycota (physiology)</term>
<term>High-Throughput Nucleotide Sequencing (MeSH)</term>
<term>Mycorrhizae (physiology)</term>
<term>Plant Roots (genetics)</term>
<term>Plant Roots (microbiology)</term>
<term>Transcriptome (MeSH)</term>
<term>Triticum (genetics)</term>
<term>Triticum (microbiology)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plant Roots</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Roots</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Glomeromycota</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>High-Throughput Nucleotide Sequencing</term>
<term>Transcriptome</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The influence of arbuscular mycorrhizal (AM) colonization on the expression of genes in the roots of wheat (Triticum aestivum L.) at the transcriptome level is largely unknown. A pot experiment was established to study the responses of the transcriptome profile in the roots of wheat to colonization by the AM fungus Rhizophagus irregularis using high through-put sequencing methods. The results indicated that the expression of 11,746 genes was regulated by AM colonization, and 64.7% of them were up-regulated genes. 1106 genes were only expressed in roots colonized by AM fungi, and 108 genes were only expressed in non-mycorrhizal roots. The differentially expressed genes (DEGs) were primarily distributed on the 2B, 3B, 2A, 2D, and 5B chromosomes of wheat. The DEGs (including both up- and down- regulated) mainly located on membranes, and functioned in nucleotide binding and transferase activity during cellular protein modification and biosynthetic processes. The data revealed that AM colonization up-regulated genes involved in the phenylpropanoid biosynthesis pathway and transcription factors which play vital roles in protecting plants from biotic or abiotic stresses. A number of key genes involved in molecular signal biosynthesis and recognition, epidermal cell colonization and arbuscule formation, carbon and nutrients exchange during AM symbiosis were found. All the ammonium transporter (AMT), iron-phytosiderophore transporter, boron, zinc, and magnesium transporter genes found in our study were up-regulated DEGs. One new AM-specific induced AMT and three new AM-specific induced nitrate transporter (NRT) genes were found in the roots of wheat colonized by AM fungi, even though a negative growth response of wheat to AM colonization occurred. The present study provided new information which is important for understanding the mechanisms behind the development and function of the symbiosis between wheat and AM fungi.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30251133</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>12</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>11</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1890</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>28</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2018</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Mycorrhiza</Title>
<ISOAbbreviation>Mycorrhiza</ISOAbbreviation>
</Journal>
<ArticleTitle>Transcriptome responses in wheat roots to colonization by the arbuscular mycorrhizal fungus Rhizophagus irregularis.</ArticleTitle>
<Pagination>
<MedlinePgn>747-759</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00572-018-0868-2</ELocationID>
<Abstract>
<AbstractText>The influence of arbuscular mycorrhizal (AM) colonization on the expression of genes in the roots of wheat (Triticum aestivum L.) at the transcriptome level is largely unknown. A pot experiment was established to study the responses of the transcriptome profile in the roots of wheat to colonization by the AM fungus Rhizophagus irregularis using high through-put sequencing methods. The results indicated that the expression of 11,746 genes was regulated by AM colonization, and 64.7% of them were up-regulated genes. 1106 genes were only expressed in roots colonized by AM fungi, and 108 genes were only expressed in non-mycorrhizal roots. The differentially expressed genes (DEGs) were primarily distributed on the 2B, 3B, 2A, 2D, and 5B chromosomes of wheat. The DEGs (including both up- and down- regulated) mainly located on membranes, and functioned in nucleotide binding and transferase activity during cellular protein modification and biosynthetic processes. The data revealed that AM colonization up-regulated genes involved in the phenylpropanoid biosynthesis pathway and transcription factors which play vital roles in protecting plants from biotic or abiotic stresses. A number of key genes involved in molecular signal biosynthesis and recognition, epidermal cell colonization and arbuscule formation, carbon and nutrients exchange during AM symbiosis were found. All the ammonium transporter (AMT), iron-phytosiderophore transporter, boron, zinc, and magnesium transporter genes found in our study were up-regulated DEGs. One new AM-specific induced AMT and three new AM-specific induced nitrate transporter (NRT) genes were found in the roots of wheat colonized by AM fungi, even though a negative growth response of wheat to AM colonization occurred. The present study provided new information which is important for understanding the mechanisms behind the development and function of the symbiosis between wheat and AM fungi.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Mengjiao</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Runze</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tian</LastName>
<ForeName>Hui</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China. tianh@nwsuaf.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gao</LastName>
<ForeName>Yajun</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>09</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Mycorrhiza</MedlineTA>
<NlmUniqueID>100955036</NlmUniqueID>
<ISSNLinking>0940-6360</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D055137" MajorTopicYN="N">Glomeromycota</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059014" MajorTopicYN="N">High-Throughput Nucleotide Sequencing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="Y">Transcriptome</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014908" MajorTopicYN="N">Triticum</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Arbuscular mycorrhizal fungi</Keyword>
<Keyword MajorTopicYN="N">RNA-seq</Keyword>
<Keyword MajorTopicYN="N">Transcriptome</Keyword>
<Keyword MajorTopicYN="N">Wheat</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>04</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>09</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>9</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>12</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>9</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30251133</ArticleId>
<ArticleId IdType="doi">10.1007/s00572-018-0868-2</ArticleId>
<ArticleId IdType="pii">10.1007/s00572-018-0868-2</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>3 Biotech. 2018 Jan;8(1):40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29291153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2017 May 30;17(1):90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28558686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Apr;137(4):1283-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15778460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2005 Nov;222(4):688-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16133217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2016 Apr 29;17:312</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27129581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genet. 2007 Aug 28;8:58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17725844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2011 Aug 04;12:323</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21816040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Jul;215(2):779-791</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28517039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2010 Jan;3(1):2-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20035037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>OMICS. 2012 May;16(5):284-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22455463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;172(3):536-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17083683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Apr 26;7(1):1176</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28446759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Biotechnol Biochem. 2012;76(12):2364-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23221721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 May;198(3):853-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23461653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2010 Sep;51(9):1411-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20627949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2008;3(6):1101-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18546601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Genet Genomics. 2009 Aug;36(8):455-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19683668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 May 31;102(22):8066-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15905328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2017 Jun 16;356(6343):1172-1175</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28596307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Dec;184(4):975-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19765230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Aug;159(4):1671-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22652128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Jul;199(1):188-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23506613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Feb 18;331(6019):909-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21205637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2018 Aug 17;361(6403):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30115783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Jun 27;417(6892):962-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12087406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2016 Oct;26(7):685-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27130314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Oct;56(1):86-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18557838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2017 Sep 7;7(9):3019-3029</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28698232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1999 Jun;18(5):509-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10417701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2017 Feb 16;12(2):e0172154</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28207830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013 Feb 04;14:77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23379779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2015 Nov;96:199-208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26298806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2014 Jul 18;345(6194):1251788</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25035500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2017 Sep 6;12(9):e0184158</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28877207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2017 Jun 16;356(6343):1175-1178</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28596311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2008 Nov;228(6):1043-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18726614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;182(1):200-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19192192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 May 12;11(5):e0155351</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27171343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 May 18;6:344</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26042135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2016 Nov;131:92-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27623505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2012 Mar 01;7(3):562-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22383036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Jun 9;435(7043):824-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15944706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2015 Aug;56(8):1490-511</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26009592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2018 Jan 4;46(D1):D802-D808</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29092050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2013 Jan;6(1):76-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23066094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2013 Oct;36(10):1771-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23421735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2015 Aug 17;25(16):2189-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26234213</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000733 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000733 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:30251133
   |texte=   Transcriptome responses in wheat roots to colonization by the arbuscular mycorrhizal fungus Rhizophagus irregularis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:30251133" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020