Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Sphagnum Species Modulate their Phenolic Profiles and Mycorrhizal Colonization of Surrounding Andromeda polifolia along Peatland Microhabitats.

Identifieur interne : 000721 ( Main/Corpus ); précédent : 000720; suivant : 000722

Sphagnum Species Modulate their Phenolic Profiles and Mycorrhizal Colonization of Surrounding Andromeda polifolia along Peatland Microhabitats.

Auteurs : Geneviève Chiapusio ; Vincent E J. Jassey ; Floriant Bellvert ; Gilles Comte ; Leslie A. Weston ; Frederic Delarue ; Alexandre Buttler ; Marie Laure Toussaint ; Philippe Binet

Source :

RBID : pubmed:30294748

English descriptors

Abstract

Sphagnum mosses mediate long-term carbon accumulation in peatlands. Given their functional role as keystone species, it is important to consider their responses to ecological gradients and environmental changes through the production of phenolics. We compared the extent to which Sphagnum phenolic production was dependent on species, microhabitats and season, and how surrounding dwarf shrubs responded to Sphagnum phenolics. We evaluated the phenolic profiles of aqueous extracts of Sphagnum fallax and Sphagnum magellanicum over a 6-month period in two microhabitats (wet lawns versus dry hummocks) in a French peatland. Phenolic profiles of water-soluble extracts were measured by UHPLC-QTOF-MS. Andromeda polifolia mycorrhizal colonization was quantified by assessing the intensity of global root cortex colonization. Phenolic profiles of both Sphagnum mosses were species-, season- and microhabitat- dependant. Sphagnum-derived acids were the phenolics mostly recovered; relative quantities were 2.5-fold higher in S. fallax than in S. magellanicum. Microtopography and vascular plant cover strongly influenced phenolic profiles, especially for minor metabolites present in low abundance. Higher mycorrhizal colonization of A. polifolia was found in lawns as compared to hummocks. Mycorrhizal abundance, in contrast to environmental parameters, was correlated with production of minor phenolics in S. fallax. Our results highlight the close interaction between mycorrhizae such as those colonizing A. polifolia and the release of Sphagnum phenolic metabolites and suggest that Sphagnum-derived acids and minor phenolics play different roles in this interaction. This work provides new insight into the ecological role of Sphagnum phenolics by proposing a strong association with mycorrhizal colonization of shrubs.

DOI: 10.1007/s10886-018-1023-4
PubMed: 30294748

Links to Exploration step

pubmed:30294748

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Sphagnum Species Modulate their Phenolic Profiles and Mycorrhizal Colonization of Surrounding Andromeda polifolia along Peatland Microhabitats.</title>
<author>
<name sortKey="Chiapusio, Genevieve" sort="Chiapusio, Genevieve" uniqKey="Chiapusio G" first="Geneviève" last="Chiapusio">Geneviève Chiapusio</name>
<affiliation>
<nlm:affiliation>Laboratoire ChronoEnvironnement, UMR CNRS 6249 USC INRA, Université de Bourgogne-Franche Comté, 25 211, Montbéliard Cedex, France. genevieve.chiapusio@univ-fcomte.fr.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Laboratoire CARRTEL, INRA 042, Alpine Centre for Research on Lake Ecosystems and Food Webs, Université Savoie Mont Blanc, 73 376, Le Bourget du Lac cedex, France. genevieve.chiapusio@univ-fcomte.fr.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jassey, Vincent E J" sort="Jassey, Vincent E J" uniqKey="Jassey V" first="Vincent E J" last="Jassey">Vincent E J. Jassey</name>
<affiliation>
<nlm:affiliation>Laboratoire ChronoEnvironnement, UMR CNRS 6249 USC INRA, Université de Bourgogne-Franche Comté, 25 211, Montbéliard Cedex, France.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Laboratoire d'Ecologie Fonctionnelle et Environnement INPT, UPS, CNRS, Université de Toulouse, 118 Route de Narbonne, 31062, Toulouse Cedex, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bellvert, Floriant" sort="Bellvert, Floriant" uniqKey="Bellvert F" first="Floriant" last="Bellvert">Floriant Bellvert</name>
<affiliation>
<nlm:affiliation>Laboratoire Ecologie Microbienne, UMR CNRS 5557, Université Lyon 1, 69 622, Villeurbanne cedex, France.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>MetaToul, Ingénierie des Systèmes Biologiques et des Procédés, INRA, UMR792, CNRS, UMR5504, 31400, Toulouse, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Comte, Gilles" sort="Comte, Gilles" uniqKey="Comte G" first="Gilles" last="Comte">Gilles Comte</name>
<affiliation>
<nlm:affiliation>Laboratoire Ecologie Microbienne, UMR CNRS 5557, Université Lyon 1, 69 622, Villeurbanne cedex, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Weston, Leslie A" sort="Weston, Leslie A" uniqKey="Weston L" first="Leslie A" last="Weston">Leslie A. Weston</name>
<affiliation>
<nlm:affiliation>Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Delarue, Frederic" sort="Delarue, Frederic" uniqKey="Delarue F" first="Frederic" last="Delarue">Frederic Delarue</name>
<affiliation>
<nlm:affiliation>Sorbonne Université, UPMC, CNRS, EPHE, PSL, UMR 7619 METIS, 4 Place Jussieu, 75005, Paris, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Buttler, Alexandre" sort="Buttler, Alexandre" uniqKey="Buttler A" first="Alexandre" last="Buttler">Alexandre Buttler</name>
<affiliation>
<nlm:affiliation>Laboratoire ChronoEnvironnement, UMR CNRS 6249 USC INRA, Université de Bourgogne-Franche Comté, 25 211, Montbéliard Cedex, France.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Ecole Polytechnique Fédérale de Lausanne EPFL, Ecological Systems Laboratory ECOS, 1015, Lausanne, Switzerland.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>WSL - Swiss Federal Institute for Forest, Snow and Landscape Research, Site Lausanne, 1015, Lausanne, Switzerland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Toussaint, Marie Laure" sort="Toussaint, Marie Laure" uniqKey="Toussaint M" first="Marie Laure" last="Toussaint">Marie Laure Toussaint</name>
<affiliation>
<nlm:affiliation>Laboratoire ChronoEnvironnement, UMR CNRS 6249 USC INRA, Université de Bourgogne-Franche Comté, 25 211, Montbéliard Cedex, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Binet, Philippe" sort="Binet, Philippe" uniqKey="Binet P" first="Philippe" last="Binet">Philippe Binet</name>
<affiliation>
<nlm:affiliation>Laboratoire ChronoEnvironnement, UMR CNRS 6249 USC INRA, Université de Bourgogne-Franche Comté, 25 211, Montbéliard Cedex, France.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30294748</idno>
<idno type="pmid">30294748</idno>
<idno type="doi">10.1007/s10886-018-1023-4</idno>
<idno type="wicri:Area/Main/Corpus">000721</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000721</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Sphagnum Species Modulate their Phenolic Profiles and Mycorrhizal Colonization of Surrounding Andromeda polifolia along Peatland Microhabitats.</title>
<author>
<name sortKey="Chiapusio, Genevieve" sort="Chiapusio, Genevieve" uniqKey="Chiapusio G" first="Geneviève" last="Chiapusio">Geneviève Chiapusio</name>
<affiliation>
<nlm:affiliation>Laboratoire ChronoEnvironnement, UMR CNRS 6249 USC INRA, Université de Bourgogne-Franche Comté, 25 211, Montbéliard Cedex, France. genevieve.chiapusio@univ-fcomte.fr.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Laboratoire CARRTEL, INRA 042, Alpine Centre for Research on Lake Ecosystems and Food Webs, Université Savoie Mont Blanc, 73 376, Le Bourget du Lac cedex, France. genevieve.chiapusio@univ-fcomte.fr.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jassey, Vincent E J" sort="Jassey, Vincent E J" uniqKey="Jassey V" first="Vincent E J" last="Jassey">Vincent E J. Jassey</name>
<affiliation>
<nlm:affiliation>Laboratoire ChronoEnvironnement, UMR CNRS 6249 USC INRA, Université de Bourgogne-Franche Comté, 25 211, Montbéliard Cedex, France.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Laboratoire d'Ecologie Fonctionnelle et Environnement INPT, UPS, CNRS, Université de Toulouse, 118 Route de Narbonne, 31062, Toulouse Cedex, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bellvert, Floriant" sort="Bellvert, Floriant" uniqKey="Bellvert F" first="Floriant" last="Bellvert">Floriant Bellvert</name>
<affiliation>
<nlm:affiliation>Laboratoire Ecologie Microbienne, UMR CNRS 5557, Université Lyon 1, 69 622, Villeurbanne cedex, France.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>MetaToul, Ingénierie des Systèmes Biologiques et des Procédés, INRA, UMR792, CNRS, UMR5504, 31400, Toulouse, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Comte, Gilles" sort="Comte, Gilles" uniqKey="Comte G" first="Gilles" last="Comte">Gilles Comte</name>
<affiliation>
<nlm:affiliation>Laboratoire Ecologie Microbienne, UMR CNRS 5557, Université Lyon 1, 69 622, Villeurbanne cedex, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Weston, Leslie A" sort="Weston, Leslie A" uniqKey="Weston L" first="Leslie A" last="Weston">Leslie A. Weston</name>
<affiliation>
<nlm:affiliation>Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Delarue, Frederic" sort="Delarue, Frederic" uniqKey="Delarue F" first="Frederic" last="Delarue">Frederic Delarue</name>
<affiliation>
<nlm:affiliation>Sorbonne Université, UPMC, CNRS, EPHE, PSL, UMR 7619 METIS, 4 Place Jussieu, 75005, Paris, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Buttler, Alexandre" sort="Buttler, Alexandre" uniqKey="Buttler A" first="Alexandre" last="Buttler">Alexandre Buttler</name>
<affiliation>
<nlm:affiliation>Laboratoire ChronoEnvironnement, UMR CNRS 6249 USC INRA, Université de Bourgogne-Franche Comté, 25 211, Montbéliard Cedex, France.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Ecole Polytechnique Fédérale de Lausanne EPFL, Ecological Systems Laboratory ECOS, 1015, Lausanne, Switzerland.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>WSL - Swiss Federal Institute for Forest, Snow and Landscape Research, Site Lausanne, 1015, Lausanne, Switzerland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Toussaint, Marie Laure" sort="Toussaint, Marie Laure" uniqKey="Toussaint M" first="Marie Laure" last="Toussaint">Marie Laure Toussaint</name>
<affiliation>
<nlm:affiliation>Laboratoire ChronoEnvironnement, UMR CNRS 6249 USC INRA, Université de Bourgogne-Franche Comté, 25 211, Montbéliard Cedex, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Binet, Philippe" sort="Binet, Philippe" uniqKey="Binet P" first="Philippe" last="Binet">Philippe Binet</name>
<affiliation>
<nlm:affiliation>Laboratoire ChronoEnvironnement, UMR CNRS 6249 USC INRA, Université de Bourgogne-Franche Comté, 25 211, Montbéliard Cedex, France.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of chemical ecology</title>
<idno type="eISSN">1573-1561</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chromatography, High Pressure Liquid (MeSH)</term>
<term>Ecosystem (MeSH)</term>
<term>Ericaceae (growth & development)</term>
<term>Ericaceae (microbiology)</term>
<term>Mycorrhizae (growth & development)</term>
<term>Phenols (analysis)</term>
<term>Phenols (chemistry)</term>
<term>Plant Roots (metabolism)</term>
<term>Plant Roots (microbiology)</term>
<term>Principal Component Analysis (MeSH)</term>
<term>Seasons (MeSH)</term>
<term>Soil (chemistry)</term>
<term>Spectrometry, Mass, Electrospray Ionization (MeSH)</term>
<term>Sphagnopsida (chemistry)</term>
<term>Sphagnopsida (metabolism)</term>
<term>Water (chemistry)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Phenols</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Phenols</term>
<term>Soil</term>
<term>Water</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Sphagnopsida</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Ericaceae</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Roots</term>
<term>Sphagnopsida</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Ericaceae</term>
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Chromatography, High Pressure Liquid</term>
<term>Ecosystem</term>
<term>Principal Component Analysis</term>
<term>Seasons</term>
<term>Spectrometry, Mass, Electrospray Ionization</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Sphagnum mosses mediate long-term carbon accumulation in peatlands. Given their functional role as keystone species, it is important to consider their responses to ecological gradients and environmental changes through the production of phenolics. We compared the extent to which Sphagnum phenolic production was dependent on species, microhabitats and season, and how surrounding dwarf shrubs responded to Sphagnum phenolics. We evaluated the phenolic profiles of aqueous extracts of Sphagnum fallax and Sphagnum magellanicum over a 6-month period in two microhabitats (wet lawns versus dry hummocks) in a French peatland. Phenolic profiles of water-soluble extracts were measured by UHPLC-QTOF-MS. Andromeda polifolia mycorrhizal colonization was quantified by assessing the intensity of global root cortex colonization. Phenolic profiles of both Sphagnum mosses were species-, season- and microhabitat- dependant. Sphagnum-derived acids were the phenolics mostly recovered; relative quantities were 2.5-fold higher in S. fallax than in S. magellanicum. Microtopography and vascular plant cover strongly influenced phenolic profiles, especially for minor metabolites present in low abundance. Higher mycorrhizal colonization of A. polifolia was found in lawns as compared to hummocks. Mycorrhizal abundance, in contrast to environmental parameters, was correlated with production of minor phenolics in S. fallax. Our results highlight the close interaction between mycorrhizae such as those colonizing A. polifolia and the release of Sphagnum phenolic metabolites and suggest that Sphagnum-derived acids and minor phenolics play different roles in this interaction. This work provides new insight into the ecological role of Sphagnum phenolics by proposing a strong association with mycorrhizal colonization of shrubs.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30294748</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>12</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>11</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1573-1561</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>44</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2018</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Journal of chemical ecology</Title>
<ISOAbbreviation>J Chem Ecol</ISOAbbreviation>
</Journal>
<ArticleTitle>Sphagnum Species Modulate their Phenolic Profiles and Mycorrhizal Colonization of Surrounding Andromeda polifolia along Peatland Microhabitats.</ArticleTitle>
<Pagination>
<MedlinePgn>1146-1157</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s10886-018-1023-4</ELocationID>
<Abstract>
<AbstractText>Sphagnum mosses mediate long-term carbon accumulation in peatlands. Given their functional role as keystone species, it is important to consider their responses to ecological gradients and environmental changes through the production of phenolics. We compared the extent to which Sphagnum phenolic production was dependent on species, microhabitats and season, and how surrounding dwarf shrubs responded to Sphagnum phenolics. We evaluated the phenolic profiles of aqueous extracts of Sphagnum fallax and Sphagnum magellanicum over a 6-month period in two microhabitats (wet lawns versus dry hummocks) in a French peatland. Phenolic profiles of water-soluble extracts were measured by UHPLC-QTOF-MS. Andromeda polifolia mycorrhizal colonization was quantified by assessing the intensity of global root cortex colonization. Phenolic profiles of both Sphagnum mosses were species-, season- and microhabitat- dependant. Sphagnum-derived acids were the phenolics mostly recovered; relative quantities were 2.5-fold higher in S. fallax than in S. magellanicum. Microtopography and vascular plant cover strongly influenced phenolic profiles, especially for minor metabolites present in low abundance. Higher mycorrhizal colonization of A. polifolia was found in lawns as compared to hummocks. Mycorrhizal abundance, in contrast to environmental parameters, was correlated with production of minor phenolics in S. fallax. Our results highlight the close interaction between mycorrhizae such as those colonizing A. polifolia and the release of Sphagnum phenolic metabolites and suggest that Sphagnum-derived acids and minor phenolics play different roles in this interaction. This work provides new insight into the ecological role of Sphagnum phenolics by proposing a strong association with mycorrhizal colonization of shrubs.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chiapusio</LastName>
<ForeName>Geneviève</ForeName>
<Initials>G</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0003-0481-141X</Identifier>
<AffiliationInfo>
<Affiliation>Laboratoire ChronoEnvironnement, UMR CNRS 6249 USC INRA, Université de Bourgogne-Franche Comté, 25 211, Montbéliard Cedex, France. genevieve.chiapusio@univ-fcomte.fr.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Laboratoire CARRTEL, INRA 042, Alpine Centre for Research on Lake Ecosystems and Food Webs, Université Savoie Mont Blanc, 73 376, Le Bourget du Lac cedex, France. genevieve.chiapusio@univ-fcomte.fr.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jassey</LastName>
<ForeName>Vincent E J</ForeName>
<Initials>VEJ</Initials>
<AffiliationInfo>
<Affiliation>Laboratoire ChronoEnvironnement, UMR CNRS 6249 USC INRA, Université de Bourgogne-Franche Comté, 25 211, Montbéliard Cedex, France.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Laboratoire d'Ecologie Fonctionnelle et Environnement INPT, UPS, CNRS, Université de Toulouse, 118 Route de Narbonne, 31062, Toulouse Cedex, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bellvert</LastName>
<ForeName>Floriant</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Laboratoire Ecologie Microbienne, UMR CNRS 5557, Université Lyon 1, 69 622, Villeurbanne cedex, France.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>MetaToul, Ingénierie des Systèmes Biologiques et des Procédés, INRA, UMR792, CNRS, UMR5504, 31400, Toulouse, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Comte</LastName>
<ForeName>Gilles</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Laboratoire Ecologie Microbienne, UMR CNRS 5557, Université Lyon 1, 69 622, Villeurbanne cedex, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Weston</LastName>
<ForeName>Leslie A</ForeName>
<Initials>LA</Initials>
<AffiliationInfo>
<Affiliation>Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Delarue</LastName>
<ForeName>Frederic</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Sorbonne Université, UPMC, CNRS, EPHE, PSL, UMR 7619 METIS, 4 Place Jussieu, 75005, Paris, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Buttler</LastName>
<ForeName>Alexandre</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Laboratoire ChronoEnvironnement, UMR CNRS 6249 USC INRA, Université de Bourgogne-Franche Comté, 25 211, Montbéliard Cedex, France.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Ecole Polytechnique Fédérale de Lausanne EPFL, Ecological Systems Laboratory ECOS, 1015, Lausanne, Switzerland.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>WSL - Swiss Federal Institute for Forest, Snow and Landscape Research, Site Lausanne, 1015, Lausanne, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Toussaint</LastName>
<ForeName>Marie Laure</ForeName>
<Initials>ML</Initials>
<AffiliationInfo>
<Affiliation>Laboratoire ChronoEnvironnement, UMR CNRS 6249 USC INRA, Université de Bourgogne-Franche Comté, 25 211, Montbéliard Cedex, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Binet</LastName>
<ForeName>Philippe</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Laboratoire ChronoEnvironnement, UMR CNRS 6249 USC INRA, Université de Bourgogne-Franche Comté, 25 211, Montbéliard Cedex, France.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>ANR-07-VUL-010</GrantID>
<Agency>French National Agency for the ANR PeatWarm project</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>10</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Chem Ecol</MedlineTA>
<NlmUniqueID>7505563</NlmUniqueID>
<ISSNLinking>0098-0331</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010636">Phenols</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002851" MajorTopicYN="N">Chromatography, High Pressure Liquid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017753" MajorTopicYN="N">Ecosystem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029791" MajorTopicYN="N">Ericaceae</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010636" MajorTopicYN="N">Phenols</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025341" MajorTopicYN="N">Principal Component Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012621" MajorTopicYN="N">Seasons</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021241" MajorTopicYN="N">Spectrometry, Mass, Electrospray Ionization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044003" MajorTopicYN="N">Sphagnopsida</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Ericaceous Andromeda polifolia</Keyword>
<Keyword MajorTopicYN="N">Mycorrhizal colonization</Keyword>
<Keyword MajorTopicYN="N">Peatland microhabitats</Keyword>
<Keyword MajorTopicYN="N">Phenolic profiles</Keyword>
<Keyword MajorTopicYN="N">Plant soil-interactions</Keyword>
<Keyword MajorTopicYN="N">Sphagnum mosses</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>05</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>10</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2018</Year>
<Month>09</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>10</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>12</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>10</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30294748</ArticleId>
<ArticleId IdType="doi">10.1007/s10886-018-1023-4</ArticleId>
<ArticleId IdType="pii">10.1007/s10886-018-1023-4</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Environ Microbiol. 2007 Nov;9(11):2795-809</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17922763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2013 May;16 Suppl 1:140-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23679013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2011 Feb;61(2):374-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20938656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2001 Apr;27(4):761-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11446299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Jul;187(2):273-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20642725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2014 Jun;40(6):515-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24946747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2017 Mar 08;8:14713</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28270693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2014 Jul;16(4):765-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25068160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Jun;190(4):1019-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21342202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2001 Oct;129(2):271-280</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28547606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2018 Jan;217(1):16-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29076547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2007 May 15;377(2-3):439-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17382372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2012 Jun;38(6):714-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22585095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glob Chang Biol. 2013 Mar;19(3):811-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23504838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2008;59(5):1115-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18349054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 1995 Jul;10(7):270-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21237035</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000721 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000721 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:30294748
   |texte=   Sphagnum Species Modulate their Phenolic Profiles and Mycorrhizal Colonization of Surrounding Andromeda polifolia along Peatland Microhabitats.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:30294748" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020