Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Phytohormones Regulate the Development of Arbuscular Mycorrhizal Symbiosis.

Identifieur interne : 000711 ( Main/Corpus ); précédent : 000710; suivant : 000712

Phytohormones Regulate the Development of Arbuscular Mycorrhizal Symbiosis.

Auteurs : Dehua Liao ; Shuangshuang Wang ; Miaomiao Cui ; Jinhui Liu ; Aiqun Chen ; Guohua Xu

Source :

RBID : pubmed:30322086

English descriptors

Abstract

Most terrestrial plants are able to form a root symbiosis with arbuscular mycorrhizal (AM) fungi for enhancing the assimilation of mineral nutrients. AM fungi are obligate symbionts that depend on host plants as their sole carbon source. Development of an AM association requires a continuous signal exchange between the two symbionts, which triggers coordinated differentiation of both partners, to enable their interaction within the root cells. The control of the AM symbiosis involves a finely-tuned process, and an increasing number of studies have pointed to a pivotal role of several phytohormones, such as strigolactones (SLs), gibberellic acids (GAs), and auxin, in the modulation of AM symbiosis, through the early recognition of events up to the final arbuscular formation. SLs are involved in the presymbiotic growth of the fungus, while auxin is required for both the early steps of fungal growth and the differentiation of arbuscules. GAs modulate arbuscule formation in a dose-dependent manner, via DELLA proteins, a group of GRAS transcription factors that negatively control the GA signaling. Here, we summarize the recent findings on the roles of these plant hormones in AM symbiosis, and also explore the current understanding of how the DELLA proteins act as central regulators to coordinate plant hormone signaling, to regulate the AM symbiosis.

DOI: 10.3390/ijms19103146
PubMed: 30322086
PubMed Central: PMC6213213

Links to Exploration step

pubmed:30322086

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Phytohormones Regulate the Development of Arbuscular Mycorrhizal Symbiosis.</title>
<author>
<name sortKey="Liao, Dehua" sort="Liao, Dehua" uniqKey="Liao D" first="Dehua" last="Liao">Dehua Liao</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China. liao.d.h@163.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Shuangshuang" sort="Wang, Shuangshuang" uniqKey="Wang S" first="Shuangshuang" last="Wang">Shuangshuang Wang</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China. 13182996886@163.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cui, Miaomiao" sort="Cui, Miaomiao" uniqKey="Cui M" first="Miaomiao" last="Cui">Miaomiao Cui</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China. 15850598876@126.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liu, Jinhui" sort="Liu, Jinhui" uniqKey="Liu J" first="Jinhui" last="Liu">Jinhui Liu</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China. miaomiaocui0126@126.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Aiqun" sort="Chen, Aiqun" uniqKey="Chen A" first="Aiqun" last="Chen">Aiqun Chen</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China. chenaq8@njau.edu.cn.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Xu, Guohua" sort="Xu, Guohua" uniqKey="Xu G" first="Guohua" last="Xu">Guohua Xu</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China. ghxu@njau.edu.cn.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China. ghxu@njau.edu.cn.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30322086</idno>
<idno type="pmid">30322086</idno>
<idno type="doi">10.3390/ijms19103146</idno>
<idno type="pmc">PMC6213213</idno>
<idno type="wicri:Area/Main/Corpus">000711</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000711</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Phytohormones Regulate the Development of Arbuscular Mycorrhizal Symbiosis.</title>
<author>
<name sortKey="Liao, Dehua" sort="Liao, Dehua" uniqKey="Liao D" first="Dehua" last="Liao">Dehua Liao</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China. liao.d.h@163.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Shuangshuang" sort="Wang, Shuangshuang" uniqKey="Wang S" first="Shuangshuang" last="Wang">Shuangshuang Wang</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China. 13182996886@163.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cui, Miaomiao" sort="Cui, Miaomiao" uniqKey="Cui M" first="Miaomiao" last="Cui">Miaomiao Cui</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China. 15850598876@126.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liu, Jinhui" sort="Liu, Jinhui" uniqKey="Liu J" first="Jinhui" last="Liu">Jinhui Liu</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China. miaomiaocui0126@126.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Aiqun" sort="Chen, Aiqun" uniqKey="Chen A" first="Aiqun" last="Chen">Aiqun Chen</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China. chenaq8@njau.edu.cn.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Xu, Guohua" sort="Xu, Guohua" uniqKey="Xu G" first="Guohua" last="Xu">Guohua Xu</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China. ghxu@njau.edu.cn.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China. ghxu@njau.edu.cn.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">International journal of molecular sciences</title>
<idno type="eISSN">1422-0067</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Gibberellins (pharmacology)</term>
<term>Indoleacetic Acids (pharmacology)</term>
<term>Mycorrhizae (drug effects)</term>
<term>Mycorrhizae (growth & development)</term>
<term>Plant Growth Regulators (pharmacology)</term>
<term>Plants (metabolism)</term>
<term>Plants (microbiology)</term>
<term>Signal Transduction (MeSH)</term>
<term>Symbiosis (drug effects)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Gibberellins</term>
<term>Indoleacetic Acids</term>
<term>Plant Growth Regulators</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Mycorrhizae</term>
<term>Symbiosis</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plants</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plants</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Signal Transduction</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Most terrestrial plants are able to form a root symbiosis with arbuscular mycorrhizal (AM) fungi for enhancing the assimilation of mineral nutrients. AM fungi are obligate symbionts that depend on host plants as their sole carbon source. Development of an AM association requires a continuous signal exchange between the two symbionts, which triggers coordinated differentiation of both partners, to enable their interaction within the root cells. The control of the AM symbiosis involves a finely-tuned process, and an increasing number of studies have pointed to a pivotal role of several phytohormones, such as strigolactones (SLs), gibberellic acids (GAs), and auxin, in the modulation of AM symbiosis, through the early recognition of events up to the final arbuscular formation. SLs are involved in the presymbiotic growth of the fungus, while auxin is required for both the early steps of fungal growth and the differentiation of arbuscules. GAs modulate arbuscule formation in a dose-dependent manner, via DELLA proteins, a group of GRAS transcription factors that negatively control the GA signaling. Here, we summarize the recent findings on the roles of these plant hormones in AM symbiosis, and also explore the current understanding of how the DELLA proteins act as central regulators to coordinate plant hormone signaling, to regulate the AM symbiosis.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30322086</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>01</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>14</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1422-0067</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>19</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2018</Year>
<Month>Oct</Month>
<Day>12</Day>
</PubDate>
</JournalIssue>
<Title>International journal of molecular sciences</Title>
<ISOAbbreviation>Int J Mol Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Phytohormones Regulate the Development of Arbuscular Mycorrhizal Symbiosis.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">E3146</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.3390/ijms19103146</ELocationID>
<Abstract>
<AbstractText>Most terrestrial plants are able to form a root symbiosis with arbuscular mycorrhizal (AM) fungi for enhancing the assimilation of mineral nutrients. AM fungi are obligate symbionts that depend on host plants as their sole carbon source. Development of an AM association requires a continuous signal exchange between the two symbionts, which triggers coordinated differentiation of both partners, to enable their interaction within the root cells. The control of the AM symbiosis involves a finely-tuned process, and an increasing number of studies have pointed to a pivotal role of several phytohormones, such as strigolactones (SLs), gibberellic acids (GAs), and auxin, in the modulation of AM symbiosis, through the early recognition of events up to the final arbuscular formation. SLs are involved in the presymbiotic growth of the fungus, while auxin is required for both the early steps of fungal growth and the differentiation of arbuscules. GAs modulate arbuscule formation in a dose-dependent manner, via DELLA proteins, a group of GRAS transcription factors that negatively control the GA signaling. Here, we summarize the recent findings on the roles of these plant hormones in AM symbiosis, and also explore the current understanding of how the DELLA proteins act as central regulators to coordinate plant hormone signaling, to regulate the AM symbiosis.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Liao</LastName>
<ForeName>Dehua</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China. liao.d.h@163.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Shuangshuang</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China. 13182996886@163.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cui</LastName>
<ForeName>Miaomiao</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China. 15850598876@126.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Jinhui</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China. miaomiaocui0126@126.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Aiqun</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China. chenaq8@njau.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>Guohua</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China. ghxu@njau.edu.cn.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China. ghxu@njau.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>10</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Int J Mol Sci</MedlineTA>
<NlmUniqueID>101092791</NlmUniqueID>
<ISSNLinking>1422-0067</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005875">Gibberellins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007210">Indoleacetic Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010937">Plant Growth Regulators</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>BU0A7MWB6L</RegistryNumber>
<NameOfSubstance UI="C007842">gibberellic acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D005875" MajorTopicYN="N">Gibberellins</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007210" MajorTopicYN="N">Indoleacetic Acids</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010937" MajorTopicYN="N">Plant Growth Regulators</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010944" MajorTopicYN="N">Plants</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">DELLA</Keyword>
<Keyword MajorTopicYN="N">arbuscular mycorrhizal symbiosis</Keyword>
<Keyword MajorTopicYN="N">phytohormone</Keyword>
<Keyword MajorTopicYN="N">signaling</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>09</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2018</Year>
<Month>10</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>10</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>10</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>10</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>1</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30322086</ArticleId>
<ArticleId IdType="pii">ijms19103146</ArticleId>
<ArticleId IdType="doi">10.3390/ijms19103146</ArticleId>
<ArticleId IdType="pmc">PMC6213213</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mycorrhiza. 2016 Oct;26(7):709-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27193443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2013 Oct;54(10):1711-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23926062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Dec;20(12):3258-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19106375</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Dec 13;108(50):20242-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22123958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2013 May;111(5):769-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23508650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2008 Jun;133(2):339-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18331402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2007 Jan;68(1):101-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17097695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Feb;167(2):545-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25527715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Mar;205(4):1431-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25580981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2018 Feb;41:67-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28968512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2015 Jul;66(13):4047-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25948707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Dec 17;110(51):E5025-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24297892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2017 May 26;3:17073</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28548655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2016 Sep 02;7:12636</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27586842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Feb;65(4):622-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21244535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genet Mol Biol. 2018 Jul/Sept.;41(3):624-637</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30044467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2018 May 15;115(20):5229-5234</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29712857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2014 Dec;65(22):6735-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24596173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2016 Oct;130:90-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27264641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2011 May;6(5):755-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21543888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2016 Apr 29;67:539-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26905654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Mar 07;483(7389):341-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22398443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2017 Sep;22(9):792-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28739135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2018 Mar 1;59(3):544-553</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29325120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2009 Jan;11(1):90-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19121118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Dec;64(6):1002-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21143680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Oct;20(10):2681-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18931020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2016;11(4):e1162369</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26984507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):11841-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11607500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2015 Aug;27(8):2261-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26243314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2018 Sep;178(1):413-427</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30026290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Jul;199(1):188-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23506613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2006 Jul;16(5):299-363</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16845554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2004 Jul;45(7):914-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15295075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Dec;166(4):2077-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25293963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2005 Nov;162(11):1210-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16323272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2015;66:161-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25621512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Sep;148(1):402-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18614712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2013 Feb;18(2):72-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23182342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2009 Oct;12(5):527-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19740698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2016 Apr 25;26(8):987-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27020747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2017 Jun 16;356(6343):1175-1178</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28596311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2014 Nov;26(11):4376-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25371548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Apr 10;10(4):e0123422</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25860838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Apr;190(1):193-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21232061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Jul 23;110(30):12492-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23836668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1996 May 6;385(3):189-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8647248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Apr;198(1):190-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23384011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2013 Jul;32(7):1067-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23525761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Jan 6;311(5757):91-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16400150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;175(3):554-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17635230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2016 Oct 24;26(20):2770-2778</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27641773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2015 Mar 2;25(5):647-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25683808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2012 May;22(5):915-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22349459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2013 Aug;209:24-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23759100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2015 Aug;66(16):4855-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25900617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Dec;196(4):1208-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23025475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Oct;23(10):3853-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22039214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Jun 9;435(7043):824-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15944706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2014 Aug;20:26-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24853646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2014 Jun;78(5):877-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24654931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2014 Jan;24(1):130-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24343576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2018 Jul;23(7):577-587</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29753631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2017 Mar 1;68(6):1371-1385</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28069779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2018 Feb 27;145(4):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29487105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2016 Apr;67(8):2413-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26889005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2013;29:593-617</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24099088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2017 Oct;22(10):880-893</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28843766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2013 Jan;6(1):76-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23066094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2017 Apr 24;27(8):1206-1212</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28392110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Sep;166(1):281-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25096975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Jan;119(1):213-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9880363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Sep;151(1):400-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19641034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2017 Apr 1;58(4):770-778</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28339724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2017 Oct;39:50-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28601651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 Jul;22(7):763-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19522558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2017 Dec 4;10(12):1480-1496</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29162416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Sep 11;455(7210):189-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18690209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2015 Apr;56(4):674-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25535196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2016 Aug 12;7:12433</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27514472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2006 Jul;4(7):e226</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16787107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2013 Mar 15;170(5):523-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23219475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Oct;196(2):535-547</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22924438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2010 Sep;17(9):1102-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20729862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Feb;189(3):701-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21091696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2015 Dec 18;350(6267):1521-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26680197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2017 Oct;29(10):2319-2335</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28855333</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000711 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000711 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:30322086
   |texte=   Phytohormones Regulate the Development of Arbuscular Mycorrhizal Symbiosis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:30322086" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020