Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Intercropping with sunflower and inoculation with arbuscular mycorrhizal fungi promotes growth of garlic chive in metal-contaminated soil at a WEEE-recycling site.

Identifieur interne : 000700 ( Main/Corpus ); précédent : 000699; suivant : 000701

Intercropping with sunflower and inoculation with arbuscular mycorrhizal fungi promotes growth of garlic chive in metal-contaminated soil at a WEEE-recycling site.

Auteurs : Yu Zhang ; Junli Hu ; Jianfeng Bai ; Hua Qin ; Junhua Wang ; Jingwei Wang ; Xiangui Lin

Source :

RBID : pubmed:30366271

English descriptors

Abstract

Heavy metal (HM) pollution in agricultural soils due to the recycling of waste electrical and electronic equipment (WEEE) has become a serious concern, but most farmers cannot afford the economic losses of fallow land during remediation. Thus, it is imperative to produce low-HM crops while remediating the contaminated soils. A 17-week pot experiment was conducted to investigate the growth and HM (Cd, Cu, Pb, Cr, Zn, and Ni) acquisition of garlic chives (Allium tuberosum Rottl. ex Spreng.) intercropped with sunflower (Helianthus annuus L.) and inoculated with (I+M) or without (I-M) the arbuscular mycorrhizal (AM) fungus Funneliformis caledonium on a severely HM-contaminated soil that was collected from a WEEE-recycling site. Compared with the monoculture control, the I-M treatment significantly (P < 0.05) decreased Cd, Cu, Cr, Zn, and Ni concentrations in the shoots of chives through rhizosphere competition and HM (except Cr) transfer from the root to the shoot of chives, and increased the average shoot fresh weight (i.e., yield) of chives by 794% by alleviating HM toxicity. Compared with the I-M treatment, the I+M treatment significantly increased soil phosphatase activity as well as root mycorrhizal colonization of both sunflower and chives. The I+M treatment had no effect on the tissue P concentration of sunflower but elevated the average dry biomass (shoot plus root) and P acquisition level of sunflower by 179% and 121%, respectively. In addition, the I+M treatment significantly increased the P concentration in the root rather than in the shoot of chives and significantly increased the level of P acquisition by chives, increasing the average yield of chives by 229%. Simultaneously, the I+M treatment significantly increased the level of HM (except Cd) acquisition by sunflower, enhancing the rhizosphere competition by sunflower over chives, and further reducing the transfer of all six HMs from root to shoot in the chives, and inducing significant decreases in chive shoot HM concentrations compared with the monoculture control. Furthermore, the I+M treatment decreased the average total concentrations and increased the average DTPA-extractable concentrations of soil HMs. The results demonstrate the multifunctional role of AM fungi in the intercropping system for both vegetable production and phytoremediation on HM-contaminated soils.

DOI: 10.1016/j.ecoenv.2018.10.046
PubMed: 30366271

Links to Exploration step

pubmed:30366271

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Intercropping with sunflower and inoculation with arbuscular mycorrhizal fungi promotes growth of garlic chive in metal-contaminated soil at a WEEE-recycling site.</title>
<author>
<name sortKey="Zhang, Yu" sort="Zhang, Yu" uniqKey="Zhang Y" first="Yu" last="Zhang">Yu Zhang</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Shanghai Collaborative Innovation Centre for WEEE Recycling, WEEE Research Centre of Shanghai Polytechnic University, Shanghai 201209, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hu, Junli" sort="Hu, Junli" uniqKey="Hu J" first="Junli" last="Hu">Junli Hu</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address: jlhu@issas.ac.cn.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bai, Jianfeng" sort="Bai, Jianfeng" uniqKey="Bai J" first="Jianfeng" last="Bai">Jianfeng Bai</name>
<affiliation>
<nlm:affiliation>Shanghai Collaborative Innovation Centre for WEEE Recycling, WEEE Research Centre of Shanghai Polytechnic University, Shanghai 201209, China. Electronic address: jfbai@sspu.edu.cn.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Qin, Hua" sort="Qin, Hua" uniqKey="Qin H" first="Hua" last="Qin">Hua Qin</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, School of Environmental and Resource Sciences, Zhejiang A & F University, Hanghou 311300, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Junhua" sort="Wang, Junhua" uniqKey="Wang J" first="Junhua" last="Wang">Junhua Wang</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Jingwei" sort="Wang, Jingwei" uniqKey="Wang J" first="Jingwei" last="Wang">Jingwei Wang</name>
<affiliation>
<nlm:affiliation>Shanghai Collaborative Innovation Centre for WEEE Recycling, WEEE Research Centre of Shanghai Polytechnic University, Shanghai 201209, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lin, Xiangui" sort="Lin, Xiangui" uniqKey="Lin X" first="Xiangui" last="Lin">Xiangui Lin</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30366271</idno>
<idno type="pmid">30366271</idno>
<idno type="doi">10.1016/j.ecoenv.2018.10.046</idno>
<idno type="wicri:Area/Main/Corpus">000700</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000700</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Intercropping with sunflower and inoculation with arbuscular mycorrhizal fungi promotes growth of garlic chive in metal-contaminated soil at a WEEE-recycling site.</title>
<author>
<name sortKey="Zhang, Yu" sort="Zhang, Yu" uniqKey="Zhang Y" first="Yu" last="Zhang">Yu Zhang</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Shanghai Collaborative Innovation Centre for WEEE Recycling, WEEE Research Centre of Shanghai Polytechnic University, Shanghai 201209, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hu, Junli" sort="Hu, Junli" uniqKey="Hu J" first="Junli" last="Hu">Junli Hu</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address: jlhu@issas.ac.cn.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bai, Jianfeng" sort="Bai, Jianfeng" uniqKey="Bai J" first="Jianfeng" last="Bai">Jianfeng Bai</name>
<affiliation>
<nlm:affiliation>Shanghai Collaborative Innovation Centre for WEEE Recycling, WEEE Research Centre of Shanghai Polytechnic University, Shanghai 201209, China. Electronic address: jfbai@sspu.edu.cn.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Qin, Hua" sort="Qin, Hua" uniqKey="Qin H" first="Hua" last="Qin">Hua Qin</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, School of Environmental and Resource Sciences, Zhejiang A & F University, Hanghou 311300, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Junhua" sort="Wang, Junhua" uniqKey="Wang J" first="Junhua" last="Wang">Junhua Wang</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Jingwei" sort="Wang, Jingwei" uniqKey="Wang J" first="Jingwei" last="Wang">Jingwei Wang</name>
<affiliation>
<nlm:affiliation>Shanghai Collaborative Innovation Centre for WEEE Recycling, WEEE Research Centre of Shanghai Polytechnic University, Shanghai 201209, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lin, Xiangui" sort="Lin, Xiangui" uniqKey="Lin X" first="Xiangui" last="Lin">Xiangui Lin</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Ecotoxicology and environmental safety</title>
<idno type="eISSN">1090-2414</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Agriculture (methods)</term>
<term>Biodegradation, Environmental (MeSH)</term>
<term>Biomass (MeSH)</term>
<term>Chive (MeSH)</term>
<term>Electronic Waste (MeSH)</term>
<term>Helianthus (MeSH)</term>
<term>Metals, Heavy (analysis)</term>
<term>Metals, Heavy (metabolism)</term>
<term>Mycorrhizae (MeSH)</term>
<term>Phosphorus (metabolism)</term>
<term>Plant Roots (chemistry)</term>
<term>Plant Roots (growth & development)</term>
<term>Plant Shoots (chemistry)</term>
<term>Plant Shoots (growth & development)</term>
<term>Recycling (MeSH)</term>
<term>Soil Pollutants (analysis)</term>
<term>Soil Pollutants (metabolism)</term>
<term>Waste Disposal Facilities (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Metals, Heavy</term>
<term>Soil Pollutants</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Metals, Heavy</term>
<term>Phosphorus</term>
<term>Soil Pollutants</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Plant Roots</term>
<term>Plant Shoots</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Plant Roots</term>
<term>Plant Shoots</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Agriculture</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biodegradation, Environmental</term>
<term>Biomass</term>
<term>Chive</term>
<term>Electronic Waste</term>
<term>Helianthus</term>
<term>Mycorrhizae</term>
<term>Recycling</term>
<term>Waste Disposal Facilities</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Heavy metal (HM) pollution in agricultural soils due to the recycling of waste electrical and electronic equipment (WEEE) has become a serious concern, but most farmers cannot afford the economic losses of fallow land during remediation. Thus, it is imperative to produce low-HM crops while remediating the contaminated soils. A 17-week pot experiment was conducted to investigate the growth and HM (Cd, Cu, Pb, Cr, Zn, and Ni) acquisition of garlic chives (Allium tuberosum Rottl. ex Spreng.) intercropped with sunflower (Helianthus annuus L.) and inoculated with (I
<sub>+M</sub>
) or without (I
<sub>-M</sub>
) the arbuscular mycorrhizal (AM) fungus Funneliformis caledonium on a severely HM-contaminated soil that was collected from a WEEE-recycling site. Compared with the monoculture control, the I
<sub>-M</sub>
treatment significantly (P < 0.05) decreased Cd, Cu, Cr, Zn, and Ni concentrations in the shoots of chives through rhizosphere competition and HM (except Cr) transfer from the root to the shoot of chives, and increased the average shoot fresh weight (i.e., yield) of chives by 794% by alleviating HM toxicity. Compared with the I
<sub>-M</sub>
treatment
<sub>,</sub>
the I
<sub>+M</sub>
treatment significantly increased soil phosphatase activity as well as root mycorrhizal colonization of both sunflower and chives. The I
<sub>+M</sub>
treatment had no effect on the tissue P concentration of sunflower but elevated the average dry biomass (shoot plus root) and P acquisition level of sunflower by 179% and 121%, respectively. In addition, the I
<sub>+M</sub>
treatment significantly increased the P concentration in the root rather than in the shoot of chives and significantly increased the level of P acquisition by chives, increasing the average yield of chives by 229%. Simultaneously, the I
<sub>+M</sub>
treatment significantly increased the level of HM (except Cd) acquisition by sunflower, enhancing the rhizosphere competition by sunflower over chives, and further reducing the transfer of all six HMs from root to shoot in the chives, and inducing significant decreases in chive shoot HM concentrations compared with the monoculture control. Furthermore, the I
<sub>+M</sub>
treatment decreased the average total concentrations and increased the average DTPA-extractable concentrations of soil HMs. The results demonstrate the multifunctional role of AM fungi in the intercropping system for both vegetable production and phytoremediation on HM-contaminated soils.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">30366271</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>01</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>03</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1090-2414</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>167</Volume>
<PubDate>
<Year>2019</Year>
<Month>Jan</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Ecotoxicology and environmental safety</Title>
<ISOAbbreviation>Ecotoxicol Environ Saf</ISOAbbreviation>
</Journal>
<ArticleTitle>Intercropping with sunflower and inoculation with arbuscular mycorrhizal fungi promotes growth of garlic chive in metal-contaminated soil at a WEEE-recycling site.</ArticleTitle>
<Pagination>
<MedlinePgn>376-384</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S0147-6513(18)31054-6</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.ecoenv.2018.10.046</ELocationID>
<Abstract>
<AbstractText>Heavy metal (HM) pollution in agricultural soils due to the recycling of waste electrical and electronic equipment (WEEE) has become a serious concern, but most farmers cannot afford the economic losses of fallow land during remediation. Thus, it is imperative to produce low-HM crops while remediating the contaminated soils. A 17-week pot experiment was conducted to investigate the growth and HM (Cd, Cu, Pb, Cr, Zn, and Ni) acquisition of garlic chives (Allium tuberosum Rottl. ex Spreng.) intercropped with sunflower (Helianthus annuus L.) and inoculated with (I
<sub>+M</sub>
) or without (I
<sub>-M</sub>
) the arbuscular mycorrhizal (AM) fungus Funneliformis caledonium on a severely HM-contaminated soil that was collected from a WEEE-recycling site. Compared with the monoculture control, the I
<sub>-M</sub>
treatment significantly (P < 0.05) decreased Cd, Cu, Cr, Zn, and Ni concentrations in the shoots of chives through rhizosphere competition and HM (except Cr) transfer from the root to the shoot of chives, and increased the average shoot fresh weight (i.e., yield) of chives by 794% by alleviating HM toxicity. Compared with the I
<sub>-M</sub>
treatment
<sub>,</sub>
the I
<sub>+M</sub>
treatment significantly increased soil phosphatase activity as well as root mycorrhizal colonization of both sunflower and chives. The I
<sub>+M</sub>
treatment had no effect on the tissue P concentration of sunflower but elevated the average dry biomass (shoot plus root) and P acquisition level of sunflower by 179% and 121%, respectively. In addition, the I
<sub>+M</sub>
treatment significantly increased the P concentration in the root rather than in the shoot of chives and significantly increased the level of P acquisition by chives, increasing the average yield of chives by 229%. Simultaneously, the I
<sub>+M</sub>
treatment significantly increased the level of HM (except Cd) acquisition by sunflower, enhancing the rhizosphere competition by sunflower over chives, and further reducing the transfer of all six HMs from root to shoot in the chives, and inducing significant decreases in chive shoot HM concentrations compared with the monoculture control. Furthermore, the I
<sub>+M</sub>
treatment decreased the average total concentrations and increased the average DTPA-extractable concentrations of soil HMs. The results demonstrate the multifunctional role of AM fungi in the intercropping system for both vegetable production and phytoremediation on HM-contaminated soils.</AbstractText>
<CopyrightInformation>Copyright © 2018 Elsevier Inc. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Yu</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Shanghai Collaborative Innovation Centre for WEEE Recycling, WEEE Research Centre of Shanghai Polytechnic University, Shanghai 201209, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hu</LastName>
<ForeName>Junli</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address: jlhu@issas.ac.cn.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bai</LastName>
<ForeName>Jianfeng</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Shanghai Collaborative Innovation Centre for WEEE Recycling, WEEE Research Centre of Shanghai Polytechnic University, Shanghai 201209, China. Electronic address: jfbai@sspu.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Qin</LastName>
<ForeName>Hua</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, School of Environmental and Resource Sciences, Zhejiang A & F University, Hanghou 311300, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Junhua</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Jingwei</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Shanghai Collaborative Innovation Centre for WEEE Recycling, WEEE Research Centre of Shanghai Polytechnic University, Shanghai 201209, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lin</LastName>
<ForeName>Xiangui</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>10</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Ecotoxicol Environ Saf</MedlineTA>
<NlmUniqueID>7805381</NlmUniqueID>
<ISSNLinking>0147-6513</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D019216">Metals, Heavy</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012989">Soil Pollutants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>27YLU75U4W</RegistryNumber>
<NameOfSubstance UI="D010758">Phosphorus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000383" MajorTopicYN="N">Agriculture</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001673" MajorTopicYN="N">Biodegradation, Environmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="N">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D027782" MajorTopicYN="Y">Chive</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059029" MajorTopicYN="N">Electronic Waste</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006368" MajorTopicYN="Y">Helianthus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019216" MajorTopicYN="N">Metals, Heavy</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="Y">Mycorrhizae</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010758" MajorTopicYN="N">Phosphorus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018520" MajorTopicYN="N">Plant Shoots</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059027" MajorTopicYN="N">Recycling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012989" MajorTopicYN="N">Soil Pollutants</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064091" MajorTopicYN="N">Waste Disposal Facilities</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Funneliformis caledonium</Keyword>
<Keyword MajorTopicYN="N">Phosphatase</Keyword>
<Keyword MajorTopicYN="N">Phytoremediation</Keyword>
<Keyword MajorTopicYN="N">Quality safety of agricultural products</Keyword>
<Keyword MajorTopicYN="N">Vegetable</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>07</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2018</Year>
<Month>10</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>10</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>10</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>1</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>10</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30366271</ArticleId>
<ArticleId IdType="pii">S0147-6513(18)31054-6</ArticleId>
<ArticleId IdType="doi">10.1016/j.ecoenv.2018.10.046</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000700 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000700 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:30366271
   |texte=   Intercropping with sunflower and inoculation with arbuscular mycorrhizal fungi promotes growth of garlic chive in metal-contaminated soil at a WEEE-recycling site.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:30366271" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020