Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Proteomic analysis of the response of Funnelifor mismosseae/Medicago sativa to atrazine stress.

Identifieur interne : 000660 ( Main/Corpus ); précédent : 000659; suivant : 000661

Proteomic analysis of the response of Funnelifor mismosseae/Medicago sativa to atrazine stress.

Auteurs : Xin Sui ; Qi Wu ; Wei Chang ; Xiaoxu Fan ; Fuqiang Song

Source :

RBID : pubmed:30463523

English descriptors

Abstract

BACKGROUND

Arbuscular mycorrhizal (AM) fungi form symbiotic associations with host plants can protect host plants against diverse biotic and abiotic stresses, and promote biodegradation of various contaminants. However, the molecular mechanisms of how the arbuscular mycorrhizal fungi and host plant association on atrazine stress were still poorly understood. To better characterize how arbuscular mycorrhizal fungi and host plant interactions increase atrazine stress, we performed physiological and proteomic analysis of Funneliformis mosseae (mycorrhizal fungi) and Medicago sativa (alfalfa) association under atrazine stress.

RESULTS

The results showed that in the Arbuscular mycorrhizal, protective enzymes were up regulated and the malondialdehyde content increased relative to those of non-mycorrhizal M.sativa. We also examined the atrazine degradation rates within the nutrient solution, and a 44.43% reduction was observed with the mycorrhizal M.sativa, with 30.83% of the reduction attributed to F. mosseae. The accumulation content in root and stem of mycorrhizal M.sativa were obviously increased 11.89% and 16.33% than those of non- mycorrhizal M.sativa. The activity of PPO, POD, CAT and SOD in mycorrhizal M.sativa were obviously higher than non mycorrhizal M.sativa under atrazine stess. We identified differential root proteins using isobaric tags for relative and absolute quantization coupled with liquid chromatography-mass spectrometry, with 533 proteins identified (276 unregulated and 257 downregulated). The differentially expressed proteins were further examined using GO, BLAST comparisons, and a literature inquiry and were classified into the categories of atrazine degradation (37.1%); atrazine stress response (28.6%); plant immune responses (14.3%); translation, synthesis, and processing (10%); and signal transduction and biological processes (10%). Furthermore, we identified glycosyl transferase, glutathione S-transferase, laccase, cytochrome P450 monooxygenase, peroxidase, and other proteins closely related to the degradation process.

CONCLUSIONS

Mycorrhizal Medicago showed improved atrazine degradation within the culturing medium and increased atrazine enrichment in the roots and stems. Additionally, AMF increased the plant root response to atrazine, with relevant enzymes up regulated and toxic effects alleviated. Overall, the findings of this study show that AMF played an important role in easing atrazine stress in plants and contributed to atrazine remediation and further contributed to the understanding of the molecular mechanism associated with atrazine stresses and potential mycorrhizal contributions in M.sativa.


DOI: 10.1186/s12870-018-1492-1
PubMed: 30463523
PubMed Central: PMC6247736

Links to Exploration step

pubmed:30463523

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Proteomic analysis of the response of Funnelifor mismosseae/Medicago sativa to atrazine stress.</title>
<author>
<name sortKey="Sui, Xin" sort="Sui, Xin" uniqKey="Sui X" first="Xin" last="Sui">Xin Sui</name>
<affiliation>
<nlm:affiliation>Heilongjiang Provincial Key Laboratory of Ecologial Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, XueFu Road No.74, Nangang district, Harbin City, 150080, People's Republic of China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Engineering Research Center of Agricultural microbiology Technology, Ministry of Education, Heilongjiang University, XueFu Road No.74, Nangang district, Harbin City, 150080, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wu, Qi" sort="Wu, Qi" uniqKey="Wu Q" first="Qi" last="Wu">Qi Wu</name>
<affiliation>
<nlm:affiliation>Heilongjiang Provincial Key Laboratory of Ecologial Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, XueFu Road No.74, Nangang district, Harbin City, 150080, People's Republic of China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Engineering Research Center of Agricultural microbiology Technology, Ministry of Education, Heilongjiang University, XueFu Road No.74, Nangang district, Harbin City, 150080, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chang, Wei" sort="Chang, Wei" uniqKey="Chang W" first="Wei" last="Chang">Wei Chang</name>
<affiliation>
<nlm:affiliation>Heilongjiang Provincial Key Laboratory of Ecologial Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, XueFu Road No.74, Nangang district, Harbin City, 150080, People's Republic of China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Engineering Research Center of Agricultural microbiology Technology, Ministry of Education, Heilongjiang University, XueFu Road No.74, Nangang district, Harbin City, 150080, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fan, Xiaoxu" sort="Fan, Xiaoxu" uniqKey="Fan X" first="Xiaoxu" last="Fan">Xiaoxu Fan</name>
<affiliation>
<nlm:affiliation>Heilongjiang Provincial Key Laboratory of Ecologial Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, XueFu Road No.74, Nangang district, Harbin City, 150080, People's Republic of China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Engineering Research Center of Agricultural microbiology Technology, Ministry of Education, Heilongjiang University, XueFu Road No.74, Nangang district, Harbin City, 150080, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Song, Fuqiang" sort="Song, Fuqiang" uniqKey="Song F" first="Fuqiang" last="Song">Fuqiang Song</name>
<affiliation>
<nlm:affiliation>Heilongjiang Provincial Key Laboratory of Ecologial Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, XueFu Road No.74, Nangang district, Harbin City, 150080, People's Republic of China. 0431sfq@163.com.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Engineering Research Center of Agricultural microbiology Technology, Ministry of Education, Heilongjiang University, XueFu Road No.74, Nangang district, Harbin City, 150080, People's Republic of China. 0431sfq@163.com.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30463523</idno>
<idno type="pmid">30463523</idno>
<idno type="doi">10.1186/s12870-018-1492-1</idno>
<idno type="pmc">PMC6247736</idno>
<idno type="wicri:Area/Main/Corpus">000660</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000660</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Proteomic analysis of the response of Funnelifor mismosseae/Medicago sativa to atrazine stress.</title>
<author>
<name sortKey="Sui, Xin" sort="Sui, Xin" uniqKey="Sui X" first="Xin" last="Sui">Xin Sui</name>
<affiliation>
<nlm:affiliation>Heilongjiang Provincial Key Laboratory of Ecologial Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, XueFu Road No.74, Nangang district, Harbin City, 150080, People's Republic of China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Engineering Research Center of Agricultural microbiology Technology, Ministry of Education, Heilongjiang University, XueFu Road No.74, Nangang district, Harbin City, 150080, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wu, Qi" sort="Wu, Qi" uniqKey="Wu Q" first="Qi" last="Wu">Qi Wu</name>
<affiliation>
<nlm:affiliation>Heilongjiang Provincial Key Laboratory of Ecologial Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, XueFu Road No.74, Nangang district, Harbin City, 150080, People's Republic of China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Engineering Research Center of Agricultural microbiology Technology, Ministry of Education, Heilongjiang University, XueFu Road No.74, Nangang district, Harbin City, 150080, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chang, Wei" sort="Chang, Wei" uniqKey="Chang W" first="Wei" last="Chang">Wei Chang</name>
<affiliation>
<nlm:affiliation>Heilongjiang Provincial Key Laboratory of Ecologial Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, XueFu Road No.74, Nangang district, Harbin City, 150080, People's Republic of China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Engineering Research Center of Agricultural microbiology Technology, Ministry of Education, Heilongjiang University, XueFu Road No.74, Nangang district, Harbin City, 150080, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fan, Xiaoxu" sort="Fan, Xiaoxu" uniqKey="Fan X" first="Xiaoxu" last="Fan">Xiaoxu Fan</name>
<affiliation>
<nlm:affiliation>Heilongjiang Provincial Key Laboratory of Ecologial Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, XueFu Road No.74, Nangang district, Harbin City, 150080, People's Republic of China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Engineering Research Center of Agricultural microbiology Technology, Ministry of Education, Heilongjiang University, XueFu Road No.74, Nangang district, Harbin City, 150080, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Song, Fuqiang" sort="Song, Fuqiang" uniqKey="Song F" first="Fuqiang" last="Song">Fuqiang Song</name>
<affiliation>
<nlm:affiliation>Heilongjiang Provincial Key Laboratory of Ecologial Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, XueFu Road No.74, Nangang district, Harbin City, 150080, People's Republic of China. 0431sfq@163.com.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Engineering Research Center of Agricultural microbiology Technology, Ministry of Education, Heilongjiang University, XueFu Road No.74, Nangang district, Harbin City, 150080, People's Republic of China. 0431sfq@163.com.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC plant biology</title>
<idno type="eISSN">1471-2229</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Atrazine (metabolism)</term>
<term>Atrazine (toxicity)</term>
<term>Biodegradation, Environmental (MeSH)</term>
<term>Glomeromycota (drug effects)</term>
<term>Glomeromycota (metabolism)</term>
<term>Herbicides (metabolism)</term>
<term>Herbicides (toxicity)</term>
<term>Medicago sativa (drug effects)</term>
<term>Medicago sativa (metabolism)</term>
<term>Medicago sativa (microbiology)</term>
<term>Mycorrhizae (drug effects)</term>
<term>Mycorrhizae (metabolism)</term>
<term>Plant Proteins (metabolism)</term>
<term>Proteome (drug effects)</term>
<term>Soil Pollutants (metabolism)</term>
<term>Soil Pollutants (toxicity)</term>
<term>Symbiosis (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="drug effects" xml:lang="en">
<term>Proteome</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Atrazine</term>
<term>Herbicides</term>
<term>Plant Proteins</term>
<term>Soil Pollutants</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="toxicity" xml:lang="en">
<term>Atrazine</term>
<term>Herbicides</term>
<term>Soil Pollutants</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Glomeromycota</term>
<term>Medicago sativa</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Glomeromycota</term>
<term>Medicago sativa</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Medicago sativa</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biodegradation, Environmental</term>
<term>Symbiosis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Arbuscular mycorrhizal (AM) fungi form symbiotic associations with host plants can protect host plants against diverse biotic and abiotic stresses, and promote biodegradation of various contaminants. However, the molecular mechanisms of how the arbuscular mycorrhizal fungi and host plant association on atrazine stress were still poorly understood. To better characterize how arbuscular mycorrhizal fungi and host plant interactions increase atrazine stress, we performed physiological and proteomic analysis of Funneliformis mosseae (mycorrhizal fungi) and Medicago sativa (alfalfa) association under atrazine stress.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>The results showed that in the Arbuscular mycorrhizal, protective enzymes were up regulated and the malondialdehyde content increased relative to those of non-mycorrhizal M.sativa. We also examined the atrazine degradation rates within the nutrient solution, and a 44.43% reduction was observed with the mycorrhizal M.sativa, with 30.83% of the reduction attributed to F. mosseae. The accumulation content in root and stem of mycorrhizal M.sativa were obviously increased 11.89% and 16.33% than those of non- mycorrhizal M.sativa. The activity of PPO, POD, CAT and SOD in mycorrhizal M.sativa were obviously higher than non mycorrhizal M.sativa under atrazine stess. We identified differential root proteins using isobaric tags for relative and absolute quantization coupled with liquid chromatography-mass spectrometry, with 533 proteins identified (276 unregulated and 257 downregulated). The differentially expressed proteins were further examined using GO, BLAST comparisons, and a literature inquiry and were classified into the categories of atrazine degradation (37.1%); atrazine stress response (28.6%); plant immune responses (14.3%); translation, synthesis, and processing (10%); and signal transduction and biological processes (10%). Furthermore, we identified glycosyl transferase, glutathione S-transferase, laccase, cytochrome P450 monooxygenase, peroxidase, and other proteins closely related to the degradation process.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>Mycorrhizal Medicago showed improved atrazine degradation within the culturing medium and increased atrazine enrichment in the roots and stems. Additionally, AMF increased the plant root response to atrazine, with relevant enzymes up regulated and toxic effects alleviated. Overall, the findings of this study show that AMF played an important role in easing atrazine stress in plants and contributed to atrazine remediation and further contributed to the understanding of the molecular mechanism associated with atrazine stresses and potential mycorrhizal contributions in M.sativa.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30463523</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>01</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2229</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>18</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2018</Year>
<Month>Nov</Month>
<Day>21</Day>
</PubDate>
</JournalIssue>
<Title>BMC plant biology</Title>
<ISOAbbreviation>BMC Plant Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Proteomic analysis of the response of Funnelifor mismosseae/Medicago sativa to atrazine stress.</ArticleTitle>
<Pagination>
<MedlinePgn>289</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12870-018-1492-1</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Arbuscular mycorrhizal (AM) fungi form symbiotic associations with host plants can protect host plants against diverse biotic and abiotic stresses, and promote biodegradation of various contaminants. However, the molecular mechanisms of how the arbuscular mycorrhizal fungi and host plant association on atrazine stress were still poorly understood. To better characterize how arbuscular mycorrhizal fungi and host plant interactions increase atrazine stress, we performed physiological and proteomic analysis of Funneliformis mosseae (mycorrhizal fungi) and Medicago sativa (alfalfa) association under atrazine stress.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">The results showed that in the Arbuscular mycorrhizal, protective enzymes were up regulated and the malondialdehyde content increased relative to those of non-mycorrhizal M.sativa. We also examined the atrazine degradation rates within the nutrient solution, and a 44.43% reduction was observed with the mycorrhizal M.sativa, with 30.83% of the reduction attributed to F. mosseae. The accumulation content in root and stem of mycorrhizal M.sativa were obviously increased 11.89% and 16.33% than those of non- mycorrhizal M.sativa. The activity of PPO, POD, CAT and SOD in mycorrhizal M.sativa were obviously higher than non mycorrhizal M.sativa under atrazine stess. We identified differential root proteins using isobaric tags for relative and absolute quantization coupled with liquid chromatography-mass spectrometry, with 533 proteins identified (276 unregulated and 257 downregulated). The differentially expressed proteins were further examined using GO, BLAST comparisons, and a literature inquiry and were classified into the categories of atrazine degradation (37.1%); atrazine stress response (28.6%); plant immune responses (14.3%); translation, synthesis, and processing (10%); and signal transduction and biological processes (10%). Furthermore, we identified glycosyl transferase, glutathione S-transferase, laccase, cytochrome P450 monooxygenase, peroxidase, and other proteins closely related to the degradation process.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Mycorrhizal Medicago showed improved atrazine degradation within the culturing medium and increased atrazine enrichment in the roots and stems. Additionally, AMF increased the plant root response to atrazine, with relevant enzymes up regulated and toxic effects alleviated. Overall, the findings of this study show that AMF played an important role in easing atrazine stress in plants and contributed to atrazine remediation and further contributed to the understanding of the molecular mechanism associated with atrazine stresses and potential mycorrhizal contributions in M.sativa.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sui</LastName>
<ForeName>Xin</ForeName>
<Initials>X</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-4339-4308</Identifier>
<AffiliationInfo>
<Affiliation>Heilongjiang Provincial Key Laboratory of Ecologial Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, XueFu Road No.74, Nangang district, Harbin City, 150080, People's Republic of China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Engineering Research Center of Agricultural microbiology Technology, Ministry of Education, Heilongjiang University, XueFu Road No.74, Nangang district, Harbin City, 150080, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Qi</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>Heilongjiang Provincial Key Laboratory of Ecologial Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, XueFu Road No.74, Nangang district, Harbin City, 150080, People's Republic of China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Engineering Research Center of Agricultural microbiology Technology, Ministry of Education, Heilongjiang University, XueFu Road No.74, Nangang district, Harbin City, 150080, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chang</LastName>
<ForeName>Wei</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Heilongjiang Provincial Key Laboratory of Ecologial Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, XueFu Road No.74, Nangang district, Harbin City, 150080, People's Republic of China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Engineering Research Center of Agricultural microbiology Technology, Ministry of Education, Heilongjiang University, XueFu Road No.74, Nangang district, Harbin City, 150080, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fan</LastName>
<ForeName>Xiaoxu</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Heilongjiang Provincial Key Laboratory of Ecologial Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, XueFu Road No.74, Nangang district, Harbin City, 150080, People's Republic of China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Engineering Research Center of Agricultural microbiology Technology, Ministry of Education, Heilongjiang University, XueFu Road No.74, Nangang district, Harbin City, 150080, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Song</LastName>
<ForeName>Fuqiang</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Heilongjiang Provincial Key Laboratory of Ecologial Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, XueFu Road No.74, Nangang district, Harbin City, 150080, People's Republic of China. 0431sfq@163.com.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Engineering Research Center of Agricultural microbiology Technology, Ministry of Education, Heilongjiang University, XueFu Road No.74, Nangang district, Harbin City, 150080, People's Republic of China. 0431sfq@163.com.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>31570635</GrantID>
<Agency>National Natural Science Foundation of China</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>31500431</GrantID>
<Agency>National Natural Science Foundation of China</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>31270535</GrantID>
<Agency>National Natural Science Foundation of China</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>JC201306</GrantID>
<Agency>Outstanding Youth Science Foundation of Heilongjiang Province</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>11</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Plant Biol</MedlineTA>
<NlmUniqueID>100967807</NlmUniqueID>
<ISSNLinking>1471-2229</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006540">Herbicides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020543">Proteome</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012989">Soil Pollutants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>QJA9M5H4IM</RegistryNumber>
<NameOfSubstance UI="D001280">Atrazine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001280" MajorTopicYN="N">Atrazine</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000633" MajorTopicYN="Y">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001673" MajorTopicYN="N">Biodegradation, Environmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055137" MajorTopicYN="N">Glomeromycota</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006540" MajorTopicYN="N">Herbicides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000633" MajorTopicYN="Y">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000455" MajorTopicYN="N">Medicago sativa</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020543" MajorTopicYN="N">Proteome</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012989" MajorTopicYN="N">Soil Pollutants</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000633" MajorTopicYN="Y">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Arbuscular mycorrhiza</Keyword>
<Keyword MajorTopicYN="N">Atrazine</Keyword>
<Keyword MajorTopicYN="N">MDA</Keyword>
<Keyword MajorTopicYN="N">Medicago sativa</Keyword>
<Keyword MajorTopicYN="N">Protective enzyme system</Keyword>
<Keyword MajorTopicYN="N">Proteome</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>01</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>10</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>11</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>11</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>1</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30463523</ArticleId>
<ArticleId IdType="doi">10.1186/s12870-018-1492-1</ArticleId>
<ArticleId IdType="pii">10.1186/s12870-018-1492-1</ArticleId>
<ArticleId IdType="pmc">PMC6247736</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Mol Biol. 2004 May;55(1):109-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15604668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Nov;36(4):433-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14617075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Feb 02;6:20245</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26833403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2011 Jul 1;10(7):3107-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21545083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2001 Feb 5;152(3):531-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11157980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Apr;149(4):1739-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19211702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2005 Sep;3(5):475-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17173634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Rev Anti Infect Ther. 2012 Sep;10(9):1037-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23106278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2001 Feb;212(3):323-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11289596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Pollut Res Int. 2016 Jun;23(11):10863-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26897580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2014 Mar;55(3):469-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24470637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1999 Apr;39(6):1231-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10380809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2008 Mar;27(3):535-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18060406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1999 Aug 20;457(1):80-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10486568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Apr;137(4):1250-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15749990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2007 Aug 15;398(1-2):78-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17540516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 Jun;63(11):4033-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22553287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2007 Mar;146(2):452-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16935399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2009 Apr;20(2):225-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19269160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2015 Aug;66(17):5301-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26093145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Dec 9;280(49):40813-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16150729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2004 Dec;220(2):278-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15322882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2009 May;6(5):359-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19377485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Water Res. 2012 Mar 1;46(3):669-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22153354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Jun;19(6):2039-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17573535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2013 Dec 1;531(2):243-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24042130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2001 Jun;213(2):164-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11469580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2011 Aug;28(8):1041-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21707270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2009 Jan;157(1):341-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18675498</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000660 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000660 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:30463523
   |texte=   Proteomic analysis of the response of Funnelifor mismosseae/Medicago sativa to atrazine stress.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:30463523" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020