Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Single nucleus sequencing reveals evidence of inter-nucleus recombination in arbuscular mycorrhizal fungi.

Identifieur interne : 000650 ( Main/Corpus ); précédent : 000649; suivant : 000651

Single nucleus sequencing reveals evidence of inter-nucleus recombination in arbuscular mycorrhizal fungi.

Auteurs : Eric Ch Chen ; Stephanie Mathieu ; Anne Hoffrichter ; Kinga Sedzielewska-Toro ; Max Peart ; Adrian Pelin ; Steve Ndikumana ; Jeanne Ropars ; Steven Dreissig ; Jorg Fuchs ; Andreas Brachmann ; Nicolas Corradi

Source :

RBID : pubmed:30516133

English descriptors

Abstract

Eukaryotes thought to have evolved clonally for millions of years are referred to as ancient asexuals. The oldest group among these are the arbuscular mycorrhizal fungi (AMF), which are plant symbionts harboring hundreds of nuclei within one continuous cytoplasm. Some AMF strains (dikaryons) harbor two co-existing nucleotypes but there is no direct evidence that such nuclei recombine in this life-stage, as is expected for sexual fungi. Here, we show that AMF nuclei with distinct genotypes can undergo recombination. Inter-nuclear genetic exchange varies in frequency among strains, and despite recombination all nuclear genomes have an average similarity of at least 99.8%. The present study demonstrates that AMF can generate genetic diversity via meiotic-like processes in the absence of observable mating. The AMF dikaryotic life-stage is a primary source of nuclear variability in these organisms, highlighting its potential for strain enhancement of these symbionts.

DOI: 10.7554/eLife.39813
PubMed: 30516133
PubMed Central: PMC6281316

Links to Exploration step

pubmed:30516133

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Single nucleus sequencing reveals evidence of inter-nucleus recombination in arbuscular mycorrhizal fungi.</title>
<author>
<name sortKey="Chen, Eric Ch" sort="Chen, Eric Ch" uniqKey="Chen E" first="Eric Ch" last="Chen">Eric Ch Chen</name>
<affiliation>
<nlm:affiliation>Department of Biology, University of Ottawa, Ottawa, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mathieu, Stephanie" sort="Mathieu, Stephanie" uniqKey="Mathieu S" first="Stephanie" last="Mathieu">Stephanie Mathieu</name>
<affiliation>
<nlm:affiliation>Department of Biology, University of Ottawa, Ottawa, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hoffrichter, Anne" sort="Hoffrichter, Anne" uniqKey="Hoffrichter A" first="Anne" last="Hoffrichter">Anne Hoffrichter</name>
<affiliation>
<nlm:affiliation>Institute of Genetics, Faculty of Biology, Ludwig Maximilian University of Munich, Munich, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sedzielewska Toro, Kinga" sort="Sedzielewska Toro, Kinga" uniqKey="Sedzielewska Toro K" first="Kinga" last="Sedzielewska-Toro">Kinga Sedzielewska-Toro</name>
<affiliation>
<nlm:affiliation>Institute of Genetics, Faculty of Biology, Ludwig Maximilian University of Munich, Munich, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Peart, Max" sort="Peart, Max" uniqKey="Peart M" first="Max" last="Peart">Max Peart</name>
<affiliation>
<nlm:affiliation>Department of Biology, University of Ottawa, Ottawa, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pelin, Adrian" sort="Pelin, Adrian" uniqKey="Pelin A" first="Adrian" last="Pelin">Adrian Pelin</name>
<affiliation>
<nlm:affiliation>Department of Biology, University of Ottawa, Ottawa, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ndikumana, Steve" sort="Ndikumana, Steve" uniqKey="Ndikumana S" first="Steve" last="Ndikumana">Steve Ndikumana</name>
<affiliation>
<nlm:affiliation>Department of Biology, University of Ottawa, Ottawa, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ropars, Jeanne" sort="Ropars, Jeanne" uniqKey="Ropars J" first="Jeanne" last="Ropars">Jeanne Ropars</name>
<affiliation>
<nlm:affiliation>Department of Biology, University of Ottawa, Ottawa, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dreissig, Steven" sort="Dreissig, Steven" uniqKey="Dreissig S" first="Steven" last="Dreissig">Steven Dreissig</name>
<affiliation>
<nlm:affiliation>Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fuchs, Jorg" sort="Fuchs, Jorg" uniqKey="Fuchs J" first="Jorg" last="Fuchs">Jorg Fuchs</name>
<affiliation>
<nlm:affiliation>Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Brachmann, Andreas" sort="Brachmann, Andreas" uniqKey="Brachmann A" first="Andreas" last="Brachmann">Andreas Brachmann</name>
<affiliation>
<nlm:affiliation>Institute of Genetics, Faculty of Biology, Ludwig Maximilian University of Munich, Munich, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Corradi, Nicolas" sort="Corradi, Nicolas" uniqKey="Corradi N" first="Nicolas" last="Corradi">Nicolas Corradi</name>
<affiliation>
<nlm:affiliation>Department of Biology, University of Ottawa, Ottawa, Canada.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30516133</idno>
<idno type="pmid">30516133</idno>
<idno type="doi">10.7554/eLife.39813</idno>
<idno type="pmc">PMC6281316</idno>
<idno type="wicri:Area/Main/Corpus">000650</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000650</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Single nucleus sequencing reveals evidence of inter-nucleus recombination in arbuscular mycorrhizal fungi.</title>
<author>
<name sortKey="Chen, Eric Ch" sort="Chen, Eric Ch" uniqKey="Chen E" first="Eric Ch" last="Chen">Eric Ch Chen</name>
<affiliation>
<nlm:affiliation>Department of Biology, University of Ottawa, Ottawa, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mathieu, Stephanie" sort="Mathieu, Stephanie" uniqKey="Mathieu S" first="Stephanie" last="Mathieu">Stephanie Mathieu</name>
<affiliation>
<nlm:affiliation>Department of Biology, University of Ottawa, Ottawa, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hoffrichter, Anne" sort="Hoffrichter, Anne" uniqKey="Hoffrichter A" first="Anne" last="Hoffrichter">Anne Hoffrichter</name>
<affiliation>
<nlm:affiliation>Institute of Genetics, Faculty of Biology, Ludwig Maximilian University of Munich, Munich, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sedzielewska Toro, Kinga" sort="Sedzielewska Toro, Kinga" uniqKey="Sedzielewska Toro K" first="Kinga" last="Sedzielewska-Toro">Kinga Sedzielewska-Toro</name>
<affiliation>
<nlm:affiliation>Institute of Genetics, Faculty of Biology, Ludwig Maximilian University of Munich, Munich, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Peart, Max" sort="Peart, Max" uniqKey="Peart M" first="Max" last="Peart">Max Peart</name>
<affiliation>
<nlm:affiliation>Department of Biology, University of Ottawa, Ottawa, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pelin, Adrian" sort="Pelin, Adrian" uniqKey="Pelin A" first="Adrian" last="Pelin">Adrian Pelin</name>
<affiliation>
<nlm:affiliation>Department of Biology, University of Ottawa, Ottawa, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ndikumana, Steve" sort="Ndikumana, Steve" uniqKey="Ndikumana S" first="Steve" last="Ndikumana">Steve Ndikumana</name>
<affiliation>
<nlm:affiliation>Department of Biology, University of Ottawa, Ottawa, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ropars, Jeanne" sort="Ropars, Jeanne" uniqKey="Ropars J" first="Jeanne" last="Ropars">Jeanne Ropars</name>
<affiliation>
<nlm:affiliation>Department of Biology, University of Ottawa, Ottawa, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dreissig, Steven" sort="Dreissig, Steven" uniqKey="Dreissig S" first="Steven" last="Dreissig">Steven Dreissig</name>
<affiliation>
<nlm:affiliation>Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fuchs, Jorg" sort="Fuchs, Jorg" uniqKey="Fuchs J" first="Jorg" last="Fuchs">Jorg Fuchs</name>
<affiliation>
<nlm:affiliation>Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Brachmann, Andreas" sort="Brachmann, Andreas" uniqKey="Brachmann A" first="Andreas" last="Brachmann">Andreas Brachmann</name>
<affiliation>
<nlm:affiliation>Institute of Genetics, Faculty of Biology, Ludwig Maximilian University of Munich, Munich, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Corradi, Nicolas" sort="Corradi, Nicolas" uniqKey="Corradi N" first="Nicolas" last="Corradi">Nicolas Corradi</name>
<affiliation>
<nlm:affiliation>Department of Biology, University of Ottawa, Ottawa, Canada.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">eLife</title>
<idno type="eISSN">2050-084X</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cell Nucleus (genetics)</term>
<term>Cell Nucleus (ultrastructure)</term>
<term>Cytoplasm (genetics)</term>
<term>Cytoplasm (ultrastructure)</term>
<term>DNA, Fungal (genetics)</term>
<term>Genetic Variation (MeSH)</term>
<term>Genome, Fungal (MeSH)</term>
<term>Genotype (MeSH)</term>
<term>Mycorrhizae (genetics)</term>
<term>Plants (microbiology)</term>
<term>Polymorphism, Single Nucleotide (MeSH)</term>
<term>Recombination, Genetic (MeSH)</term>
<term>Sequence Analysis, DNA (MeSH)</term>
<term>Symbiosis (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Fungal</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Cell Nucleus</term>
<term>Cytoplasm</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plants</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="en">
<term>Cell Nucleus</term>
<term>Cytoplasm</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Genetic Variation</term>
<term>Genome, Fungal</term>
<term>Genotype</term>
<term>Polymorphism, Single Nucleotide</term>
<term>Recombination, Genetic</term>
<term>Sequence Analysis, DNA</term>
<term>Symbiosis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Eukaryotes thought to have evolved clonally for millions of years are referred to as ancient asexuals. The oldest group among these are the arbuscular mycorrhizal fungi (AMF), which are plant symbionts harboring hundreds of nuclei within one continuous cytoplasm. Some AMF strains (dikaryons) harbor two co-existing nucleotypes but there is no direct evidence that such nuclei recombine in this life-stage, as is expected for sexual fungi. Here, we show that AMF nuclei with distinct genotypes can undergo recombination. Inter-nuclear genetic exchange varies in frequency among strains, and despite recombination all nuclear genomes have an average similarity of at least 99.8%. The present study demonstrates that AMF can generate genetic diversity via meiotic-like processes in the absence of observable mating. The AMF dikaryotic life-stage is a primary source of nuclear variability in these organisms, highlighting its potential for strain enhancement of these symbionts.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30516133</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>03</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2050-084X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<PubDate>
<Year>2018</Year>
<Month>12</Month>
<Day>05</Day>
</PubDate>
</JournalIssue>
<Title>eLife</Title>
<ISOAbbreviation>Elife</ISOAbbreviation>
</Journal>
<ArticleTitle>Single nucleus sequencing reveals evidence of inter-nucleus recombination in arbuscular mycorrhizal fungi.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.7554/eLife.39813</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">e39813</ELocationID>
<Abstract>
<AbstractText>Eukaryotes thought to have evolved clonally for millions of years are referred to as ancient asexuals. The oldest group among these are the arbuscular mycorrhizal fungi (AMF), which are plant symbionts harboring hundreds of nuclei within one continuous cytoplasm. Some AMF strains (dikaryons) harbor two co-existing nucleotypes but there is no direct evidence that such nuclei recombine in this life-stage, as is expected for sexual fungi. Here, we show that AMF nuclei with distinct genotypes can undergo recombination. Inter-nuclear genetic exchange varies in frequency among strains, and despite recombination all nuclear genomes have an average similarity of at least 99.8%. The present study demonstrates that AMF can generate genetic diversity via meiotic-like processes in the absence of observable mating. The AMF dikaryotic life-stage is a primary source of nuclear variability in these organisms, highlighting its potential for strain enhancement of these symbionts.</AbstractText>
<CopyrightInformation>© 2018, Chen et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Eric Ch</ForeName>
<Initials>EC</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, University of Ottawa, Ottawa, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mathieu</LastName>
<ForeName>Stephanie</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, University of Ottawa, Ottawa, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hoffrichter</LastName>
<ForeName>Anne</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Institute of Genetics, Faculty of Biology, Ludwig Maximilian University of Munich, Munich, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sedzielewska-Toro</LastName>
<ForeName>Kinga</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Institute of Genetics, Faculty of Biology, Ludwig Maximilian University of Munich, Munich, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Peart</LastName>
<ForeName>Max</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, University of Ottawa, Ottawa, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pelin</LastName>
<ForeName>Adrian</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, University of Ottawa, Ottawa, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ndikumana</LastName>
<ForeName>Steve</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, University of Ottawa, Ottawa, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ropars</LastName>
<ForeName>Jeanne</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, University of Ottawa, Ottawa, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dreissig</LastName>
<ForeName>Steven</ForeName>
<Initials>S</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-4766-9698</Identifier>
<AffiliationInfo>
<Affiliation>Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fuchs</LastName>
<ForeName>Jorg</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Brachmann</LastName>
<ForeName>Andreas</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Institute of Genetics, Faculty of Biology, Ludwig Maximilian University of Munich, Munich, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Corradi</LastName>
<ForeName>Nicolas</ForeName>
<Initials>N</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-7932-7932</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biology, University of Ottawa, Ottawa, Canada.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>12</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Elife</MedlineTA>
<NlmUniqueID>101579614</NlmUniqueID>
<ISSNLinking>2050-084X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004271">DNA, Fungal</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="ErratumIn">
<RefSource>Elife. 2019 Mar 21;8:</RefSource>
<PMID Version="1">30895927</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="CommentIn">
<RefSource>Elife. 2019 Oct 25;8:</RefSource>
<PMID Version="1">31650958</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002467" MajorTopicYN="N">Cell Nucleus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003593" MajorTopicYN="N">Cytoplasm</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004271" MajorTopicYN="N">DNA, Fungal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014644" MajorTopicYN="N">Genetic Variation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016681" MajorTopicYN="Y">Genome, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010944" MajorTopicYN="N">Plants</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020641" MajorTopicYN="N">Polymorphism, Single Nucleotide</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011995" MajorTopicYN="Y">Recombination, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">S. cerevisiae</Keyword>
<Keyword MajorTopicYN="Y">arbuscular mycorrhizal fungi</Keyword>
<Keyword MajorTopicYN="Y">evolutionary biology</Keyword>
<Keyword MajorTopicYN="Y">genetics</Keyword>
<Keyword MajorTopicYN="Y">genomics</Keyword>
<Keyword MajorTopicYN="Y">meiosis</Keyword>
<Keyword MajorTopicYN="Y">recombination</Keyword>
<Keyword MajorTopicYN="Y">sexual reproduction</Keyword>
<Keyword MajorTopicYN="Y">single nucleus sequencing</Keyword>
</KeywordList>
<CoiStatement>EC, SM, AH, KS, MP, AP, SN, JR, SD, JF, AB, NC No competing interests declared</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>07</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>11</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>12</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>12</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>3</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30516133</ArticleId>
<ArticleId IdType="doi">10.7554/eLife.39813</ArticleId>
<ArticleId IdType="pii">39813</ArticleId>
<ArticleId IdType="pmc">PMC6281316</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Trends Ecol Evol. 1996 Feb;11(2):41-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21237759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2006 Mar;172(3):1877-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16461425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2013 Mar;31(3):213-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23396013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioessays. 2014 Apr;36(4):334</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24599722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Eukaryot Microbiol. 2010 Jul-Aug;57(4):383-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20553353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Jun 7;411(6838):692-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11395771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2016 Jan 26;5:e11473</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26809473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2014 Jan;10(1):e1004078</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24415955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2016 Aug 22;26(16):R754-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27554650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Jul 21;112(29):8901-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26195774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Jan;201(1):254-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24033097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Oct 27;112(43):13390-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26438870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Mar;205(4):1406-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25639293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Dec;192(4):794-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21988748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2017 Feb;22(2):175-183</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27876487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2010 Nov;27(11):2474-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20566475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2018 Dec;220(4):1161-1171</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29355972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Biol Rev. 2015 Dec 1;29(3-4):108-117</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26834823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Feb 15;27(4):578-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21149342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2009 Jan;25(1):9-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19027982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2015 Dec;28:10-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26210747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2016 Mar 21;26(6):723-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26948882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Microbiol. 2016 Mar 21;1(6):16033</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27572831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2013 Dec;12(12):1629-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24123269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2013 Jan-Feb;105(1):1-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23099518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioessays. 2014 Apr;36(4):335-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24531982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2009 Jan 15;9:13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19146661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Aug 22;500(7463):453-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23873043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2010;44:271-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20822441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Apr;186(2):267-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20409182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1999 Jun 24;399(6738):737-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10391236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2011;3:950-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21876220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 May 19;288(5469):1211-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10817991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioessays. 2005 Jan;27(1):76-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15612027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2016 Mar 10;531(7593):233-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26909573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Biol. 2012 May;19(5):455-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22506599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2017 Jan 9;13(1):e1006550</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28068346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Oct 13;290(5490):331-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11030650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Biol Rev. 2015 Dec 1;29(3-4):220-229</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26688691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2016 Oct 19;371(1706):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27619703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2010 Apr;27(4):954-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19995828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 May;18(5):810-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18340039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2003 May;20(5):754-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12679528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2017 May;33(5):364-374</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28359582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2016 Aug;26(8):1091-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27325116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1988 Dec 1;336(6198):435-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3057385</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000650 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000650 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:30516133
   |texte=   Single nucleus sequencing reveals evidence of inter-nucleus recombination in arbuscular mycorrhizal fungi.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:30516133" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020