Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Role of urban ectomycorrhizal fungi in improving the tolerance of lodgepole pine (Pinus contorta) seedlings to salt stress.

Identifieur interne : 000494 ( Main/Corpus ); précédent : 000493; suivant : 000495

Role of urban ectomycorrhizal fungi in improving the tolerance of lodgepole pine (Pinus contorta) seedlings to salt stress.

Auteurs : Janusz J. Zwiazek ; Maria A. Equiza ; Justine Karst ; Jorge Senorans ; Mark Wartenbe ; Monica Calvo-Polanco

Source :

RBID : pubmed:30982089

English descriptors

Abstract

With large forested urban areas, the city of Edmonton, Alberta, Canada, faces high annual costs of replacing trees injured by deicing salts that are commonly used for winter road maintenance. Ectomycorrhizal fungi form symbiotic associations with tree roots that allow trees to tolerate the detrimental effects of polluted soils. Here, we examined mycorrhizal colonization of Pinus contorta by germinating seeds in soils collected from different locations: (1) two urban areas within the city of Edmonton, and (2) an intact pine forest just outside Edmonton. We then tested the responses of seedlings to 0-, 60-, and 90-mM NaCl. Our results showed lower abundance and diversity of ectomycorrhizal fungi in seedlings colonized with the urban soils compared to those from the pine forest soil. However, when subsequently exposed to NaCl treatments, only seedlings inoculated with one of the urban soils containing fungi from the genera Tuber, Suillus, and Wilcoxina, showed reduced shoot Na accumulation and higher growth rates. Our results indicate that local ectomycorrhizal fungi that are adapted to challenging urban sites may offer a potential suitable source for inoculum for conifer trees designated for plating in polluted urban environments.

DOI: 10.1007/s00572-019-00893-3
PubMed: 30982089

Links to Exploration step

pubmed:30982089

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Role of urban ectomycorrhizal fungi in improving the tolerance of lodgepole pine (Pinus contorta) seedlings to salt stress.</title>
<author>
<name sortKey="Zwiazek, Janusz J" sort="Zwiazek, Janusz J" uniqKey="Zwiazek J" first="Janusz J" last="Zwiazek">Janusz J. Zwiazek</name>
<affiliation>
<nlm:affiliation>Department of Renewable Resources, University of Alberta, 4-42 Earth Sciences Building, Edmonton, AB, T6G 2E3, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Equiza, Maria A" sort="Equiza, Maria A" uniqKey="Equiza M" first="Maria A" last="Equiza">Maria A. Equiza</name>
<affiliation>
<nlm:affiliation>Department of Renewable Resources, University of Alberta, 4-42 Earth Sciences Building, Edmonton, AB, T6G 2E3, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Karst, Justine" sort="Karst, Justine" uniqKey="Karst J" first="Justine" last="Karst">Justine Karst</name>
<affiliation>
<nlm:affiliation>Department of Renewable Resources, University of Alberta, 4-42 Earth Sciences Building, Edmonton, AB, T6G 2E3, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Senorans, Jorge" sort="Senorans, Jorge" uniqKey="Senorans J" first="Jorge" last="Senorans">Jorge Senorans</name>
<affiliation>
<nlm:affiliation>Department of Renewable Resources, University of Alberta, 4-42 Earth Sciences Building, Edmonton, AB, T6G 2E3, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wartenbe, Mark" sort="Wartenbe, Mark" uniqKey="Wartenbe M" first="Mark" last="Wartenbe">Mark Wartenbe</name>
<affiliation>
<nlm:affiliation>City of Edmonton, P.O. Box 2359, Edmonton, AB, T5J 2R7, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Calvo Polanco, Monica" sort="Calvo Polanco, Monica" uniqKey="Calvo Polanco M" first="Monica" last="Calvo-Polanco">Monica Calvo-Polanco</name>
<affiliation>
<nlm:affiliation>Department of Renewable Resources, University of Alberta, 4-42 Earth Sciences Building, Edmonton, AB, T6G 2E3, Canada. mcalvopolanco@gmail.com.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30982089</idno>
<idno type="pmid">30982089</idno>
<idno type="doi">10.1007/s00572-019-00893-3</idno>
<idno type="wicri:Area/Main/Corpus">000494</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000494</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Role of urban ectomycorrhizal fungi in improving the tolerance of lodgepole pine (Pinus contorta) seedlings to salt stress.</title>
<author>
<name sortKey="Zwiazek, Janusz J" sort="Zwiazek, Janusz J" uniqKey="Zwiazek J" first="Janusz J" last="Zwiazek">Janusz J. Zwiazek</name>
<affiliation>
<nlm:affiliation>Department of Renewable Resources, University of Alberta, 4-42 Earth Sciences Building, Edmonton, AB, T6G 2E3, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Equiza, Maria A" sort="Equiza, Maria A" uniqKey="Equiza M" first="Maria A" last="Equiza">Maria A. Equiza</name>
<affiliation>
<nlm:affiliation>Department of Renewable Resources, University of Alberta, 4-42 Earth Sciences Building, Edmonton, AB, T6G 2E3, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Karst, Justine" sort="Karst, Justine" uniqKey="Karst J" first="Justine" last="Karst">Justine Karst</name>
<affiliation>
<nlm:affiliation>Department of Renewable Resources, University of Alberta, 4-42 Earth Sciences Building, Edmonton, AB, T6G 2E3, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Senorans, Jorge" sort="Senorans, Jorge" uniqKey="Senorans J" first="Jorge" last="Senorans">Jorge Senorans</name>
<affiliation>
<nlm:affiliation>Department of Renewable Resources, University of Alberta, 4-42 Earth Sciences Building, Edmonton, AB, T6G 2E3, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wartenbe, Mark" sort="Wartenbe, Mark" uniqKey="Wartenbe M" first="Mark" last="Wartenbe">Mark Wartenbe</name>
<affiliation>
<nlm:affiliation>City of Edmonton, P.O. Box 2359, Edmonton, AB, T5J 2R7, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Calvo Polanco, Monica" sort="Calvo Polanco, Monica" uniqKey="Calvo Polanco M" first="Monica" last="Calvo-Polanco">Monica Calvo-Polanco</name>
<affiliation>
<nlm:affiliation>Department of Renewable Resources, University of Alberta, 4-42 Earth Sciences Building, Edmonton, AB, T6G 2E3, Canada. mcalvopolanco@gmail.com.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Mycorrhiza</title>
<idno type="eISSN">1432-1890</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biodiversity (MeSH)</term>
<term>Fungi (classification)</term>
<term>Fungi (genetics)</term>
<term>Fungi (isolation & purification)</term>
<term>Fungi (physiology)</term>
<term>Mycorrhizae (classification)</term>
<term>Mycorrhizae (genetics)</term>
<term>Mycorrhizae (isolation & purification)</term>
<term>Mycorrhizae (physiology)</term>
<term>Pinus (microbiology)</term>
<term>Pinus (physiology)</term>
<term>Salt Stress (MeSH)</term>
<term>Seedlings (microbiology)</term>
<term>Seedlings (physiology)</term>
<term>Sodium Chloride (metabolism)</term>
<term>Trees (microbiology)</term>
<term>Trees (physiology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Sodium Chloride</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Fungi</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Fungi</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="isolation & purification" xml:lang="en">
<term>Fungi</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Pinus</term>
<term>Seedlings</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Fungi</term>
<term>Mycorrhizae</term>
<term>Pinus</term>
<term>Seedlings</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biodiversity</term>
<term>Salt Stress</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">With large forested urban areas, the city of Edmonton, Alberta, Canada, faces high annual costs of replacing trees injured by deicing salts that are commonly used for winter road maintenance. Ectomycorrhizal fungi form symbiotic associations with tree roots that allow trees to tolerate the detrimental effects of polluted soils. Here, we examined mycorrhizal colonization of Pinus contorta by germinating seeds in soils collected from different locations: (1) two urban areas within the city of Edmonton, and (2) an intact pine forest just outside Edmonton. We then tested the responses of seedlings to 0-, 60-, and 90-mM NaCl. Our results showed lower abundance and diversity of ectomycorrhizal fungi in seedlings colonized with the urban soils compared to those from the pine forest soil. However, when subsequently exposed to NaCl treatments, only seedlings inoculated with one of the urban soils containing fungi from the genera Tuber, Suillus, and Wilcoxina, showed reduced shoot Na accumulation and higher growth rates. Our results indicate that local ectomycorrhizal fungi that are adapted to challenging urban sites may offer a potential suitable source for inoculum for conifer trees designated for plating in polluted urban environments.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30982089</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>10</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>02</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1890</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>29</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2019</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Mycorrhiza</Title>
<ISOAbbreviation>Mycorrhiza</ISOAbbreviation>
</Journal>
<ArticleTitle>Role of urban ectomycorrhizal fungi in improving the tolerance of lodgepole pine (Pinus contorta) seedlings to salt stress.</ArticleTitle>
<Pagination>
<MedlinePgn>303-312</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00572-019-00893-3</ELocationID>
<Abstract>
<AbstractText>With large forested urban areas, the city of Edmonton, Alberta, Canada, faces high annual costs of replacing trees injured by deicing salts that are commonly used for winter road maintenance. Ectomycorrhizal fungi form symbiotic associations with tree roots that allow trees to tolerate the detrimental effects of polluted soils. Here, we examined mycorrhizal colonization of Pinus contorta by germinating seeds in soils collected from different locations: (1) two urban areas within the city of Edmonton, and (2) an intact pine forest just outside Edmonton. We then tested the responses of seedlings to 0-, 60-, and 90-mM NaCl. Our results showed lower abundance and diversity of ectomycorrhizal fungi in seedlings colonized with the urban soils compared to those from the pine forest soil. However, when subsequently exposed to NaCl treatments, only seedlings inoculated with one of the urban soils containing fungi from the genera Tuber, Suillus, and Wilcoxina, showed reduced shoot Na accumulation and higher growth rates. Our results indicate that local ectomycorrhizal fungi that are adapted to challenging urban sites may offer a potential suitable source for inoculum for conifer trees designated for plating in polluted urban environments.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zwiazek</LastName>
<ForeName>Janusz J</ForeName>
<Initials>JJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Renewable Resources, University of Alberta, 4-42 Earth Sciences Building, Edmonton, AB, T6G 2E3, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Equiza</LastName>
<ForeName>Maria A</ForeName>
<Initials>MA</Initials>
<AffiliationInfo>
<Affiliation>Department of Renewable Resources, University of Alberta, 4-42 Earth Sciences Building, Edmonton, AB, T6G 2E3, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Karst</LastName>
<ForeName>Justine</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Renewable Resources, University of Alberta, 4-42 Earth Sciences Building, Edmonton, AB, T6G 2E3, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Senorans</LastName>
<ForeName>Jorge</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Renewable Resources, University of Alberta, 4-42 Earth Sciences Building, Edmonton, AB, T6G 2E3, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wartenbe</LastName>
<ForeName>Mark</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>City of Edmonton, P.O. Box 2359, Edmonton, AB, T5J 2R7, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Calvo-Polanco</LastName>
<ForeName>Monica</ForeName>
<Initials>M</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-0813-0921</Identifier>
<AffiliationInfo>
<Affiliation>Department of Renewable Resources, University of Alberta, 4-42 Earth Sciences Building, Edmonton, AB, T6G 2E3, Canada. mcalvopolanco@gmail.com.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>04</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Mycorrhiza</MedlineTA>
<NlmUniqueID>100955036</NlmUniqueID>
<ISSNLinking>0940-6360</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>451W47IQ8X</RegistryNumber>
<NameOfSubstance UI="D012965">Sodium Chloride</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D044822" MajorTopicYN="N">Biodiversity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005658" MajorTopicYN="N">Fungi</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D028223" MajorTopicYN="N">Pinus</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000077323" MajorTopicYN="Y">Salt Stress</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D036226" MajorTopicYN="N">Seedlings</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012965" MajorTopicYN="N">Sodium Chloride</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Cl</Keyword>
<Keyword MajorTopicYN="N">Ectomycorrizal fungi</Keyword>
<Keyword MajorTopicYN="N">Gas exchange</Keyword>
<Keyword MajorTopicYN="N">Growth</Keyword>
<Keyword MajorTopicYN="N">Na</Keyword>
<Keyword MajorTopicYN="N">Root hydraulic conductivity</Keyword>
<Keyword MajorTopicYN="N">Urban areas</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>11</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>04</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>4</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>10</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>4</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30982089</ArticleId>
<ArticleId IdType="doi">10.1007/s00572-019-00893-3</ArticleId>
<ArticleId IdType="pii">10.1007/s00572-019-00893-3</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Ecol. 1999 Nov;8(11):1837-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10620228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2003 Dec;13(6):319-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12748839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2004 Mar;120(3):482-490</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15032846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Microbiol. 2005 May 18;5:28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15904497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2006 Mar;16(2):99-109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16261378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycol Res. 2006 Feb;110(Pt 2):196-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16387485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;169(1):169-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16390428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2006 Sep;26(9):1185-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16740494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2006 Sep;8(5):646-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16755463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2007 Mar;17(2):121-131</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17115201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2008 May;10(5):1189-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18266759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2008 Oct;18(8):393-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18685871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2009 Jan;135(1):51-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19121099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 May;33(5):769-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20040068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2010 Mar;12(2):292-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20398236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2011 Feb;21(2):91-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20422233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Sep;187(4):895-910</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20673286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2011 Aug;21(6):537-547</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21287207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2012 Sep;81(3):547-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22469019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2012 Jun 27;12:99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22738296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycobiology. 2013 Jun;41(2):77-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23874129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycobiology. 2010 Sep;38(3):225-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23956661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome. 2013 Oct;56(10):577-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24237338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2014 Aug;24(6):431-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24424508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Mar 04;9(3):e90631</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24595059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2014 Jun;19(6):371-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24630845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2015 Feb;115(3):419-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25466549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2015 Feb;20(2):72-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25476199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2015 Jun;24(11):2747-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25728665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Water Air Soil Pollut. 2015;226(4):99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25821257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2017 Apr;26(7):2063-2076</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27761941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2017 Nov 16;83(23):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28970220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2018 Mar;234:562-571</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29223120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2019 Apr 1;39(4):526-535</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30371901</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000494 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000494 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:30982089
   |texte=   Role of urban ectomycorrhizal fungi in improving the tolerance of lodgepole pine (Pinus contorta) seedlings to salt stress.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:30982089" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020