Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Ectomycorrhizal symbiosis helps plants to challenge salt stress conditions.

Identifieur interne : 000487 ( Main/Corpus ); précédent : 000486; suivant : 000488

Ectomycorrhizal symbiosis helps plants to challenge salt stress conditions.

Auteurs : Carmen Guerrero-Galán ; Monica Calvo-Polanco ; Sabine Dagmar Zimmermann

Source :

RBID : pubmed:31011805

English descriptors

Abstract

Soil salinity is an environmental condition that is currently increasing worldwide. Plant growth under salinity induces osmotic stress and ion toxicity impairing root water and nutrient absorption, but the association with beneficial soil microorganisms has been linked to an improved adaptation to this constraint. The ectomycorrhizal (ECM) symbiosis has been proposed as a key factor for a better tolerance of woody species to salt stress, thanks to the reduction of sodium (Na+) uptake towards photosynthetic organs. Although no precise mechanisms for this enhanced plant salt tolerance have been described yet, in this review, we summarize the knowledge accumulated so far on the role of ECM symbiosis. Moreover, we propose several strategies by which ECM fungi might help plants, including restriction of Na+ entrance into plant tissues and improvement of mineral nutrition and water balances. This positive effect of ECM fungi has been proven in field assays and the results obtained point to a promising application in forestry cultures and reforestation.

DOI: 10.1007/s00572-019-00894-2
PubMed: 31011805

Links to Exploration step

pubmed:31011805

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Ectomycorrhizal symbiosis helps plants to challenge salt stress conditions.</title>
<author>
<name sortKey="Guerrero Galan, Carmen" sort="Guerrero Galan, Carmen" uniqKey="Guerrero Galan C" first="Carmen" last="Guerrero-Galán">Carmen Guerrero-Galán</name>
<affiliation>
<nlm:affiliation>BPMP, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Universidad Politécnica de Madrid (UPM), 28223, Pozuelo de Alarcón, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Calvo Polanco, Monica" sort="Calvo Polanco, Monica" uniqKey="Calvo Polanco M" first="Monica" last="Calvo-Polanco">Monica Calvo-Polanco</name>
<affiliation>
<nlm:affiliation>BPMP, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zimmermann, Sabine Dagmar" sort="Zimmermann, Sabine Dagmar" uniqKey="Zimmermann S" first="Sabine Dagmar" last="Zimmermann">Sabine Dagmar Zimmermann</name>
<affiliation>
<nlm:affiliation>BPMP, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France. sabine.zimmermann@cnrs.fr.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31011805</idno>
<idno type="pmid">31011805</idno>
<idno type="doi">10.1007/s00572-019-00894-2</idno>
<idno type="wicri:Area/Main/Corpus">000487</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000487</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Ectomycorrhizal symbiosis helps plants to challenge salt stress conditions.</title>
<author>
<name sortKey="Guerrero Galan, Carmen" sort="Guerrero Galan, Carmen" uniqKey="Guerrero Galan C" first="Carmen" last="Guerrero-Galán">Carmen Guerrero-Galán</name>
<affiliation>
<nlm:affiliation>BPMP, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Universidad Politécnica de Madrid (UPM), 28223, Pozuelo de Alarcón, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Calvo Polanco, Monica" sort="Calvo Polanco, Monica" uniqKey="Calvo Polanco M" first="Monica" last="Calvo-Polanco">Monica Calvo-Polanco</name>
<affiliation>
<nlm:affiliation>BPMP, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zimmermann, Sabine Dagmar" sort="Zimmermann, Sabine Dagmar" uniqKey="Zimmermann S" first="Sabine Dagmar" last="Zimmermann">Sabine Dagmar Zimmermann</name>
<affiliation>
<nlm:affiliation>BPMP, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France. sabine.zimmermann@cnrs.fr.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Mycorrhiza</title>
<idno type="eISSN">1432-1890</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Fungi (physiology)</term>
<term>Mycorrhizae (physiology)</term>
<term>Plant Roots (growth & development)</term>
<term>Plant Roots (microbiology)</term>
<term>Plant Roots (physiology)</term>
<term>Salt Stress (MeSH)</term>
<term>Sodium (metabolism)</term>
<term>Symbiosis (MeSH)</term>
<term>Water (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Sodium</term>
<term>Water</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Fungi</term>
<term>Mycorrhizae</term>
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Salt Stress</term>
<term>Symbiosis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Soil salinity is an environmental condition that is currently increasing worldwide. Plant growth under salinity induces osmotic stress and ion toxicity impairing root water and nutrient absorption, but the association with beneficial soil microorganisms has been linked to an improved adaptation to this constraint. The ectomycorrhizal (ECM) symbiosis has been proposed as a key factor for a better tolerance of woody species to salt stress, thanks to the reduction of sodium (Na
<sup>+</sup>
) uptake towards photosynthetic organs. Although no precise mechanisms for this enhanced plant salt tolerance have been described yet, in this review, we summarize the knowledge accumulated so far on the role of ECM symbiosis. Moreover, we propose several strategies by which ECM fungi might help plants, including restriction of Na
<sup>+</sup>
entrance into plant tissues and improvement of mineral nutrition and water balances. This positive effect of ECM fungi has been proven in field assays and the results obtained point to a promising application in forestry cultures and reforestation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31011805</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>10</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>02</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1890</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>29</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2019</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Mycorrhiza</Title>
<ISOAbbreviation>Mycorrhiza</ISOAbbreviation>
</Journal>
<ArticleTitle>Ectomycorrhizal symbiosis helps plants to challenge salt stress conditions.</ArticleTitle>
<Pagination>
<MedlinePgn>291-301</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00572-019-00894-2</ELocationID>
<Abstract>
<AbstractText>Soil salinity is an environmental condition that is currently increasing worldwide. Plant growth under salinity induces osmotic stress and ion toxicity impairing root water and nutrient absorption, but the association with beneficial soil microorganisms has been linked to an improved adaptation to this constraint. The ectomycorrhizal (ECM) symbiosis has been proposed as a key factor for a better tolerance of woody species to salt stress, thanks to the reduction of sodium (Na
<sup>+</sup>
) uptake towards photosynthetic organs. Although no precise mechanisms for this enhanced plant salt tolerance have been described yet, in this review, we summarize the knowledge accumulated so far on the role of ECM symbiosis. Moreover, we propose several strategies by which ECM fungi might help plants, including restriction of Na
<sup>+</sup>
entrance into plant tissues and improvement of mineral nutrition and water balances. This positive effect of ECM fungi has been proven in field assays and the results obtained point to a promising application in forestry cultures and reforestation.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Guerrero-Galán</LastName>
<ForeName>Carmen</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>BPMP, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Universidad Politécnica de Madrid (UPM), 28223, Pozuelo de Alarcón, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Calvo-Polanco</LastName>
<ForeName>Monica</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>BPMP, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zimmermann</LastName>
<ForeName>Sabine Dagmar</ForeName>
<Initials>SD</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-5020-1447</Identifier>
<AffiliationInfo>
<Affiliation>BPMP, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France. sabine.zimmermann@cnrs.fr.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>04</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Mycorrhiza</MedlineTA>
<NlmUniqueID>100955036</NlmUniqueID>
<ISSNLinking>0940-6360</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9NEZ333N27</RegistryNumber>
<NameOfSubstance UI="D012964">Sodium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D005658" MajorTopicYN="N">Fungi</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000077323" MajorTopicYN="Y">Salt Stress</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012964" MajorTopicYN="N">Sodium</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="Y">Symbiosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Ectomycorrhizal (ECM) symbiosis</Keyword>
<Keyword MajorTopicYN="N">Membrane transporters</Keyword>
<Keyword MajorTopicYN="N">Nutrient and water transport</Keyword>
<Keyword MajorTopicYN="N">Salt tolerance</Keyword>
<Keyword MajorTopicYN="N">Sodium</Keyword>
<Keyword MajorTopicYN="N">Trees</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>12</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>04</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>4</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>10</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>4</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31011805</ArticleId>
<ArticleId IdType="doi">10.1007/s00572-019-00894-2</ArticleId>
<ArticleId IdType="pii">10.1007/s00572-019-00894-2</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochim Biophys Acta. 2000 Mar 10;1469(1):1-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10692635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 2000 Jun;51:463-499</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 Aug 6;118(3):351-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15294160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2005 Oct;222(2):258-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15883833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2005 May;15(3):149-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15883852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Oct;139(2):790-805</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16183846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2006 Mar;16(2):99-109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16261378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Dec;139(4):1762-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16299175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1985 Sep;79(1):207-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16664372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2006 Sep;26(9):1185-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16740494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2006 Sep;8(5):646-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16755463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;171(1):41-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16771981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2006 Nov;16(8):559-565</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17033816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2007 Mar;17(2):121-131</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17115201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Aug 17;282(33):24284-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17588950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2008;59:651-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18444910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stud Mycol. 2007;58:157-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18490999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2009 Jun;19(5):329-335</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19104846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycol Res. 2009 Nov;113(Pt 11):1231-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19747974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Dec;151(4):1902-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19812185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2009 Dec;104(7):1263-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19815570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 May;33(5):769-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20040068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2010 Mar;74(1):95-120</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20197501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2010 Oct;1798(10):1841-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20650263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2010 Oct;61(15):4449-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20713463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2011 Feb;21(2):71-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21140277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Jun;190(4):927-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21352231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 Jan;63(1):43-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21914658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Aug;159(4):1771-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22652127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2013 Jun;15(6):1853-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23379715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2013 Apr 02;14(4):7370-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23549270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2013 Sep;26(9):1068-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23656332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycobiology. 2010 Sep;38(3):225-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23956661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Feb;201(3):951-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24279702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2014 Aug;24(6):431-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24424508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2014 Apr;27(4):349-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24593244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Mar 04;9(3):e90631</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24595059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2014 May 15;171(9):708-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24810768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2014 May 15;171(9):723-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24810769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Jul 17;5:337</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25101097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2014 Nov;98(21):8835-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25213914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Jan;205(2):757-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25323307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Pollut Res Int. 2015 Mar;22(6):4056-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25398215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2015 Jun;24(11):2747-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25728665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Water Air Soil Pollut. 2015;226(4):99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25821257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2015 Nov;38(11):2475-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25857333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2015 Aug;30(8):477-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26111583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2016 Mar;123:4-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26803396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2016 Jul;26(5):441-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26861480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Microbiol. 2016 Jul;62(7):543-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27170470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2016 Nov;39(11):2498-2514</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27448529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2016 Dec 15;573:727-739</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27591523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2016 Sep 07;7:12662</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27601008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2017 Apr;26(7):2063-2076</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27761941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Dec;216(4):1049-1053</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28643868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2018 May;20(5):1873-1887</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29614209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Dev Biol. 2016 Feb 04;4(1):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29615577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Symbiosis. 2018;75(1):17-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29674805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2018 Apr 18;9:651</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29720967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2018;13(6):e1480845</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29939816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2019 Jun;222(4):1951-1964</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30756398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2019 Jul;29(4):303-312</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30982089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol. 1971 Aug;22(2):210-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5096381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Oct 17;272(42):26145-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9334180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 1998 Oct;144 ( Pt 10):2749-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9802016</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000487 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000487 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:31011805
   |texte=   Ectomycorrhizal symbiosis helps plants to challenge salt stress conditions.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:31011805" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020