Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A Medicago truncatula SWEET transporter implicated in arbuscule maintenance during arbuscular mycorrhizal symbiosis.

Identifieur interne : 000445 ( Main/Corpus ); précédent : 000444; suivant : 000446

A Medicago truncatula SWEET transporter implicated in arbuscule maintenance during arbuscular mycorrhizal symbiosis.

Auteurs : Jianyong An ; Tian Zeng ; Chuanya Ji ; Sanne De Graaf ; Zijun Zheng ; Ting Ting Xiao ; Xiuxin Deng ; Shunyuan Xiao ; Ton Bisseling ; Erik Limpens ; Zhiyong Pan

Source :

RBID : pubmed:31148173

English descriptors

Abstract

Plants form a mutualistic symbiosis with arbuscular mycorrhizal (AM) fungi, which facilitates the acquisition of scarce minerals from the soil. In return, the host plants provide sugars and lipids to its fungal partner. However, the mechanism by which the AM fungi obtain sugars from the plant has remained elusive. In this study we investigated the role of potential SWEET family sugar exporters in AM symbiosis in Medicago truncatula. We show that M. truncatula SWEET1b transporter is strongly upregulated in arbuscule-containing cells compared to roots and localizes to the peri-arbuscular membrane, across which nutrient exchange takes place. Heterologous expression of MtSWEET1b in a yeast hexose transport mutant showed that it mainly transports glucose. Overexpression of MtSWEET1b in M. truncatula roots promoted the growth of intraradical mycelium during AM symbiosis. Surprisingly, two independent Mtsweet1b mutants, which are predicted to produce truncated protein variants impaired in glucose transport, exhibited no significant defects in AM symbiosis. However, arbuscule-specific overexpression of MtSWEET1bY57A/G58D , which are considered to act in a dominant-negative manner, resulted in enhanced collapse of arbuscules. Taken together, our results reveal a (redundant) role for MtSWEET1b in the transport of glucose across the peri-arbuscular membrane to maintain arbuscules for a healthy mutually beneficial symbiosis.

DOI: 10.1111/nph.15975
PubMed: 31148173

Links to Exploration step

pubmed:31148173

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A Medicago truncatula SWEET transporter implicated in arbuscule maintenance during arbuscular mycorrhizal symbiosis.</title>
<author>
<name sortKey="An, Jianyong" sort="An, Jianyong" uniqKey="An J" first="Jianyong" last="An">Jianyong An</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region, Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zeng, Tian" sort="Zeng, Tian" uniqKey="Zeng T" first="Tian" last="Zeng">Tian Zeng</name>
<affiliation>
<nlm:affiliation>Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ji, Chuanya" sort="Ji, Chuanya" uniqKey="Ji C" first="Chuanya" last="Ji">Chuanya Ji</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region, Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="De Graaf, Sanne" sort="De Graaf, Sanne" uniqKey="De Graaf S" first="Sanne" last="De Graaf">Sanne De Graaf</name>
<affiliation>
<nlm:affiliation>Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zheng, Zijun" sort="Zheng, Zijun" uniqKey="Zheng Z" first="Zijun" last="Zheng">Zijun Zheng</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region, Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Xiao, Ting Ting" sort="Xiao, Ting Ting" uniqKey="Xiao T" first="Ting Ting" last="Xiao">Ting Ting Xiao</name>
<affiliation>
<nlm:affiliation>Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Deng, Xiuxin" sort="Deng, Xiuxin" uniqKey="Deng X" first="Xiuxin" last="Deng">Xiuxin Deng</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region, Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Xiao, Shunyuan" sort="Xiao, Shunyuan" uniqKey="Xiao S" first="Shunyuan" last="Xiao">Shunyuan Xiao</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region, Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Institute for Bioscience and Biotechnology Research & Department of Plant Sciences and Landscape Architecture, University of Maryland College Park, Rockville, MD, 20850, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bisseling, Ton" sort="Bisseling, Ton" uniqKey="Bisseling T" first="Ton" last="Bisseling">Ton Bisseling</name>
<affiliation>
<nlm:affiliation>Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Limpens, Erik" sort="Limpens, Erik" uniqKey="Limpens E" first="Erik" last="Limpens">Erik Limpens</name>
<affiliation>
<nlm:affiliation>Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pan, Zhiyong" sort="Pan, Zhiyong" uniqKey="Pan Z" first="Zhiyong" last="Pan">Zhiyong Pan</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region, Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31148173</idno>
<idno type="pmid">31148173</idno>
<idno type="doi">10.1111/nph.15975</idno>
<idno type="wicri:Area/Main/Corpus">000445</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000445</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A Medicago truncatula SWEET transporter implicated in arbuscule maintenance during arbuscular mycorrhizal symbiosis.</title>
<author>
<name sortKey="An, Jianyong" sort="An, Jianyong" uniqKey="An J" first="Jianyong" last="An">Jianyong An</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region, Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zeng, Tian" sort="Zeng, Tian" uniqKey="Zeng T" first="Tian" last="Zeng">Tian Zeng</name>
<affiliation>
<nlm:affiliation>Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ji, Chuanya" sort="Ji, Chuanya" uniqKey="Ji C" first="Chuanya" last="Ji">Chuanya Ji</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region, Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="De Graaf, Sanne" sort="De Graaf, Sanne" uniqKey="De Graaf S" first="Sanne" last="De Graaf">Sanne De Graaf</name>
<affiliation>
<nlm:affiliation>Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zheng, Zijun" sort="Zheng, Zijun" uniqKey="Zheng Z" first="Zijun" last="Zheng">Zijun Zheng</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region, Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Xiao, Ting Ting" sort="Xiao, Ting Ting" uniqKey="Xiao T" first="Ting Ting" last="Xiao">Ting Ting Xiao</name>
<affiliation>
<nlm:affiliation>Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Deng, Xiuxin" sort="Deng, Xiuxin" uniqKey="Deng X" first="Xiuxin" last="Deng">Xiuxin Deng</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region, Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Xiao, Shunyuan" sort="Xiao, Shunyuan" uniqKey="Xiao S" first="Shunyuan" last="Xiao">Shunyuan Xiao</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region, Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Institute for Bioscience and Biotechnology Research & Department of Plant Sciences and Landscape Architecture, University of Maryland College Park, Rockville, MD, 20850, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bisseling, Ton" sort="Bisseling, Ton" uniqKey="Bisseling T" first="Ton" last="Bisseling">Ton Bisseling</name>
<affiliation>
<nlm:affiliation>Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Limpens, Erik" sort="Limpens, Erik" uniqKey="Limpens E" first="Erik" last="Limpens">Erik Limpens</name>
<affiliation>
<nlm:affiliation>Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pan, Zhiyong" sort="Pan, Zhiyong" uniqKey="Pan Z" first="Zhiyong" last="Pan">Zhiyong Pan</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region, Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The New phytologist</title>
<idno type="eISSN">1469-8137</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alleles (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genes, Dominant (MeSH)</term>
<term>Glucose (metabolism)</term>
<term>Green Fluorescent Proteins (metabolism)</term>
<term>Medicago truncatula (genetics)</term>
<term>Medicago truncatula (metabolism)</term>
<term>Medicago truncatula (microbiology)</term>
<term>Membrane Transport Proteins (metabolism)</term>
<term>Membranes (metabolism)</term>
<term>Models, Biological (MeSH)</term>
<term>Mutagenesis, Insertional (genetics)</term>
<term>Mycelium (growth & development)</term>
<term>Mycorrhizae (cytology)</term>
<term>Mycorrhizae (growth & development)</term>
<term>Mycorrhizae (physiology)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Symbiosis (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glucose</term>
<term>Green Fluorescent Proteins</term>
<term>Membrane Transport Proteins</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Medicago truncatula</term>
<term>Mutagenesis, Insertional</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Mycelium</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Medicago truncatula</term>
<term>Membranes</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Medicago truncatula</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Alleles</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genes, Dominant</term>
<term>Models, Biological</term>
<term>Symbiosis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Plants form a mutualistic symbiosis with arbuscular mycorrhizal (AM) fungi, which facilitates the acquisition of scarce minerals from the soil. In return, the host plants provide sugars and lipids to its fungal partner. However, the mechanism by which the AM fungi obtain sugars from the plant has remained elusive. In this study we investigated the role of potential SWEET family sugar exporters in AM symbiosis in Medicago truncatula. We show that M. truncatula SWEET1b transporter is strongly upregulated in arbuscule-containing cells compared to roots and localizes to the peri-arbuscular membrane, across which nutrient exchange takes place. Heterologous expression of MtSWEET1b in a yeast hexose transport mutant showed that it mainly transports glucose. Overexpression of MtSWEET1b in M. truncatula roots promoted the growth of intraradical mycelium during AM symbiosis. Surprisingly, two independent Mtsweet1b mutants, which are predicted to produce truncated protein variants impaired in glucose transport, exhibited no significant defects in AM symbiosis. However, arbuscule-specific overexpression of MtSWEET1b
<sup>Y57A/G58D</sup>
, which are considered to act in a dominant-negative manner, resulted in enhanced collapse of arbuscules. Taken together, our results reveal a (redundant) role for MtSWEET1b in the transport of glucose across the peri-arbuscular membrane to maintain arbuscules for a healthy mutually beneficial symbiosis.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31148173</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>05</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1469-8137</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>224</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2019</Year>
<Month>10</Month>
</PubDate>
</JournalIssue>
<Title>The New phytologist</Title>
<ISOAbbreviation>New Phytol</ISOAbbreviation>
</Journal>
<ArticleTitle>A Medicago truncatula SWEET transporter implicated in arbuscule maintenance during arbuscular mycorrhizal symbiosis.</ArticleTitle>
<Pagination>
<MedlinePgn>396-408</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/nph.15975</ELocationID>
<Abstract>
<AbstractText>Plants form a mutualistic symbiosis with arbuscular mycorrhizal (AM) fungi, which facilitates the acquisition of scarce minerals from the soil. In return, the host plants provide sugars and lipids to its fungal partner. However, the mechanism by which the AM fungi obtain sugars from the plant has remained elusive. In this study we investigated the role of potential SWEET family sugar exporters in AM symbiosis in Medicago truncatula. We show that M. truncatula SWEET1b transporter is strongly upregulated in arbuscule-containing cells compared to roots and localizes to the peri-arbuscular membrane, across which nutrient exchange takes place. Heterologous expression of MtSWEET1b in a yeast hexose transport mutant showed that it mainly transports glucose. Overexpression of MtSWEET1b in M. truncatula roots promoted the growth of intraradical mycelium during AM symbiosis. Surprisingly, two independent Mtsweet1b mutants, which are predicted to produce truncated protein variants impaired in glucose transport, exhibited no significant defects in AM symbiosis. However, arbuscule-specific overexpression of MtSWEET1b
<sup>Y57A/G58D</sup>
, which are considered to act in a dominant-negative manner, resulted in enhanced collapse of arbuscules. Taken together, our results reveal a (redundant) role for MtSWEET1b in the transport of glucose across the peri-arbuscular membrane to maintain arbuscules for a healthy mutually beneficial symbiosis.</AbstractText>
<CopyrightInformation>© 2019 The Authors. New Phytologist © 2019 New Phytologist Trust.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>An</LastName>
<ForeName>Jianyong</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region, Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zeng</LastName>
<ForeName>Tian</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ji</LastName>
<ForeName>Chuanya</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region, Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>de Graaf</LastName>
<ForeName>Sanne</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zheng</LastName>
<ForeName>Zijun</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region, Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xiao</LastName>
<ForeName>Ting Ting</ForeName>
<Initials>TT</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Deng</LastName>
<ForeName>Xiuxin</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region, Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xiao</LastName>
<ForeName>Shunyuan</ForeName>
<Initials>S</Initials>
<Identifier Source="ORCID">0000-0003-1348-4879</Identifier>
<AffiliationInfo>
<Affiliation>Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region, Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institute for Bioscience and Biotechnology Research & Department of Plant Sciences and Landscape Architecture, University of Maryland College Park, Rockville, MD, 20850, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bisseling</LastName>
<ForeName>Ton</ForeName>
<Initials>T</Initials>
<Identifier Source="ORCID">0000-0001-5494-8786</Identifier>
<AffiliationInfo>
<Affiliation>Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Limpens</LastName>
<ForeName>Erik</ForeName>
<Initials>E</Initials>
<Identifier Source="ORCID">0000-0002-9668-4085</Identifier>
<AffiliationInfo>
<Affiliation>Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pan</LastName>
<ForeName>Zhiyong</ForeName>
<Initials>Z</Initials>
<Identifier Source="ORCID">0000-0002-0018-4298</Identifier>
<AffiliationInfo>
<Affiliation>Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region, Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>07</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>New Phytol</MedlineTA>
<NlmUniqueID>9882884</NlmUniqueID>
<ISSNLinking>0028-646X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D026901">Membrane Transport Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>147336-22-9</RegistryNumber>
<NameOfSubstance UI="D049452">Green Fluorescent Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>IY9XDZ35W2</RegistryNumber>
<NameOfSubstance UI="D005947">Glucose</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000483" MajorTopicYN="N">Alleles</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005799" MajorTopicYN="N">Genes, Dominant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005947" MajorTopicYN="N">Glucose</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049452" MajorTopicYN="N">Green Fluorescent Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046913" MajorTopicYN="N">Medicago truncatula</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D026901" MajorTopicYN="N">Membrane Transport Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008566" MajorTopicYN="N">Membranes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016254" MajorTopicYN="N">Mutagenesis, Insertional</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025282" MajorTopicYN="N">Mycelium</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="Y">Symbiosis</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Medicago truncatula </Keyword>
<Keyword MajorTopicYN="Y">SWEET </Keyword>
<Keyword MajorTopicYN="Y">arbuscular mycorrhiza (AM)</Keyword>
<Keyword MajorTopicYN="Y">glucose</Keyword>
<Keyword MajorTopicYN="Y">sugar export</Keyword>
<Keyword MajorTopicYN="Y">symbiosis</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>02</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>05</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>5</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>5</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>6</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31148173</ArticleId>
<ArticleId IdType="doi">10.1111/nph.15975</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>Bago B, Pfeffer PE, Abubaker J, Jun J, Allen JW, Brouillette J, Douds DD, Lammers PJ, Shachar-Hill Y. 2003. Carbon export from arbuscular mycorrhizal roots involves the translocation of carbohydrate as well as lipid. Plant Physiology 131: 1496-1507.</Citation>
</Reference>
<Reference>
<Citation>Bago B, Pfeffer PE, Shachar-Hill Y. 2000. Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiology 124: 949-958.</Citation>
</Reference>
<Reference>
<Citation>Baier MC, Keck M, Godde V, Niehaus K, Kuster H, Hohnjec N. 2010. Knockdown of the symbiotic sucrose synthase MtSucS1 affects arbuscule maturation and maintenance in mycorrhizal roots of Medicago truncatula. Plant Physiology 152: 1000-1014.</Citation>
</Reference>
<Reference>
<Citation>Benedito VA, Torres-Jerez I, Murray JD, Andriankaja A, Allen S, Kakar K, Wandrey M, Verdier J, Zuber H, Ott T et al. 2008. A gene expression atlas of the model legume Medicago truncatula. The Plant Journal 55: 504-513.</Citation>
</Reference>
<Reference>
<Citation>Bezrutczyk M, Yang J, Eom JS, Prior M, Sosso D, Hartwig T, Szurek B, Oliva R, Vera-Cruz C, White FF et al. 2018. Sugar flux and signaling in plant-microbe interactions. The Plant Journal 93: 675-685.</Citation>
</Reference>
<Reference>
<Citation>Blee KA, Anderson AJ. 1998. Regulation of arbuscule formation by carbon in the plant. The Plant Journal 16: 523-530.</Citation>
</Reference>
<Reference>
<Citation>Breuillin F, Schramm J, Hajirezaei M, Ahkami A, Favre P, Druege U, Hause B, Bucher M, Kretzschmar T, Bossolini E et al. 2010. Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning. The Plant Journal 64: 1002-1017.</Citation>
</Reference>
<Reference>
<Citation>Chen HY, Huh JH, Yu YC, Ho LH, Chen LQ, Tholl D, Frommer WB, Guo WJ. 2015. The Arabidopsis vacuolar sugar transporter SWEET2 limits carbon sequestration from roots and restricts Pythium infection. The Plant Journal 83: 1046-1058.</Citation>
</Reference>
<Reference>
<Citation>Chen LQ. 2014. SWEET sugar transporters for phloem transport and pathogen nutrition. New Phytologist 201: 1150-1155.</Citation>
</Reference>
<Reference>
<Citation>Chen LQ, Cheung LS, Feng L, Tanner W, Frommer WB. 2015. Transport of sugars. Annual Review of Biochemistry 84: 865-894.</Citation>
</Reference>
<Reference>
<Citation>Chen LQ, Hou BH, Lalonde S, Takanaga H, Hartung ML, Qu XQ, Guo WJ, Kim JG, Underwood W, Chaudhuri B et al. 2010. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468: 527-532.</Citation>
</Reference>
<Reference>
<Citation>Chen LQ, Qu XQ, Hou BH, Sosso D, Osorio S, Fernie AR, Frommer WB. 2012. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science 335: 207-211.</Citation>
</Reference>
<Reference>
<Citation>Chong J, Piron MC, Meyer S, Merdinoglu D, Bertsch C, Mestre P. 2014. The SWEET family of sugar transporters in grapevine: VvSWEET4 is involved in the interaction with Botrytis cinerea. Journal of Experimental Botany 65: 6589-6601.</Citation>
</Reference>
<Reference>
<Citation>Eom JS, Chen LQ, Sosso D, Julius BT, Lin IW, Qu XQ, Braun DM, Frommer WB. 2015. SWEETs, transporters for intracellular and intercellular sugar translocation. Current Opinion in Plant Biology 25: 53-62.</Citation>
</Reference>
<Reference>
<Citation>Floss DS, Gomez SK, Park HJ, MacLean AM, Muller LM, Bhattarai KK, Levesque-Tremblay V, Maldonado-Mendoza IE, Harrison MJ. 2017. A transcriptional program for arbuscule degeneration during AM symbiosis is regulated by MYB1. Current Biology 27: 1206-1212.</Citation>
</Reference>
<Reference>
<Citation>Floss DS, Levy JG, Levesque-Tremblay V, Pumplin N, Harrison MJ. 2013. DELLA proteins regulate arbuscule formation in arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences, USA 110: 5025-5034.</Citation>
</Reference>
<Reference>
<Citation>Gaude N, Bortfeld S, Duensing N, Lohse M, Krajinski F. 2012a. Arbuscule-containing and non-colonized cortical cells of mycorrhizal roots undergo extensive and specific reprogramming during arbuscular mycorrhizal development. The Plant Journal 69: 510-528.</Citation>
</Reference>
<Reference>
<Citation>Gaude N, Schulze WX, Franken P, Krajinski F. 2012b. Cell type-specific protein and transcription profiles implicate periarbuscular membrane synthesis as an important carbon sink in the mycorrhizal symbiosis. Plant Signaling & Behavior 7: 461-464.</Citation>
</Reference>
<Reference>
<Citation>Gietz RD, Schiestl RH. 2007. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nature Protocols 2: 31-34.</Citation>
</Reference>
<Reference>
<Citation>Gutjahr C, Parniske M. 2013. Cell and developmental biology of arbuscular mycorrhiza symbiosis. Annual Review of Cell and Developmental Biology 29: 593-617.</Citation>
</Reference>
<Reference>
<Citation>Handa Y, Nishide H, Takeda N, Suzuki Y, Kawaguchi M, Saito K. 2015. RNA-seq transcriptional profiling of an arbuscular mycorrhiza provides insights into regulated and coordinated gene expression in Lotus japonicus and Rhizophagus irregularis. Plant and Cell Physiology 56: 1490-1511.</Citation>
</Reference>
<Reference>
<Citation>Harrison MJ, Dewbre GR, Liu J. 2002. A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. The Plant Cell 14: 2413-2429.</Citation>
</Reference>
<Reference>
<Citation>Helber N, Wippel K, Sauer N, Schaarschmidt S, Hause B, Requena N. 2011. A versatile monosaccharide transporter that operates in the arbuscular mycorrhizal fungus Glomus sp is crucial for the symbiotic relationship with plants. The Plant Cell 23: 3812-3823.</Citation>
</Reference>
<Reference>
<Citation>Huisman R, Hontelez J, Mysore KS, Wen J, Bisseling T, Limpens E. 2016. A symbiosis-dedicated SYNTAXIN OF PLANTS 13II isoform controls the formation of a stable host-microbe interface in symbiosis. New Phytologist 211: 1338-1351.</Citation>
</Reference>
<Reference>
<Citation>Javot H, Penmetsa RV, Breuillin F, Bhattarai KK, Noar RD, Gomez SK, Zhang Q, Cook DR, Harrison MJ. 2011. Medicago truncatula mtpt4 mutants reveal a role for nitrogen in the regulation of arbuscule degeneration in arbuscular mycorrhizal symbiosis. The Plant Journal 68: 954-965.</Citation>
</Reference>
<Reference>
<Citation>Javot H, Penmetsa RV, Terzaghi N, Cook DR, Harrison MJ. 2007. A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences, USA 104: 1720-1725.</Citation>
</Reference>
<Reference>
<Citation>Jiang Y, Wang W, Xie Q, Liu N, Liu L, Wang D, Zhang X, Yang C, Chen X, Tang D. 2017. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science 325: 1172-1725.</Citation>
</Reference>
<Reference>
<Citation>Kafle A, Garcia K, Wang X, Pfeffer P, Strahan G, Bücking H. 2019. Nutrient demand and fungal access to resources control the carbon allocation to the symbiotic partners in tripartite interactions of Medicago truncatua. Plant, Cell & Environment 42: 270-284.</Citation>
</Reference>
<Reference>
<Citation>Kanno Y, Oikawa T, Chiba Y, Ishimaru Y, Shimizu T, Sano N, Koshiba T, Kamiya Y, Ueda M, Seo M. 2016. AtSWEET13 and AtSWEET14 regulate gibberellin-mediated physiological processes. Nature Communications 7: 13245.</Citation>
</Reference>
<Reference>
<Citation>Keymer A, Pimprikar P, Wewer V, Huber C, Brands M, Bucerius SL, Delaux PM, Klingl V, Ropenack-Lahaye EV, Wang TL et al. 2017. Lipid transfer from plants to arbuscular mycorrhiza fungi. eLife 6: 1-33.</Citation>
</Reference>
<Reference>
<Citation>Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A et al. 2011. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333: 880-882.</Citation>
</Reference>
<Reference>
<Citation>Krajinski F, Courty PE, Sieh D, Franken P, Zhang HQ, Bucher M, Gerlach N, Kryvoruchko I, Zoeller D, Udvardi M et al. 2014. The H+-ATPase HA1 of Medicago truncatula is essential for phosphate transport and plant growth during arbuscular mycorrhizal symbiosis. The Plant Cell 26: 1808-1817.</Citation>
</Reference>
<Reference>
<Citation>Kryvoruchko IS, Sinharoy S, Torres-Jerez I, Sosso D, Pislariu CI, Guan D, Murray J, Benedito VA, Frommer WB, Udvardi MK. 2016. MtSWEET11, a nodule-specific sucrose transporter of Medicago truncatula. Plant Physiology 171: 554-565.</Citation>
</Reference>
<Reference>
<Citation>Limpens E, Ramos J, Franken C, Raz V, Compaan B, Franssen H, Bisseling T, Geurts R. 2004. RNA interference in Agrobacterium rhizogenes transformed roots of Arabidopsis and Medicago truncatula. Journal of Experimental Botany 55: 983-992.</Citation>
</Reference>
<Reference>
<Citation>Lin IW, Sosso D, Chen LQ, Gase K, Kim SG, Kessler D, Klinkenberg PM, Gorder MK, Hou BH, Qu XQ et al. 2014. Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9. Nature 508: 546-549.</Citation>
</Reference>
<Reference>
<Citation>Luginbuehl LH, Menard GN, Kurup S, Van Erp H, Radhakrishnan GV, Breakspear A, Oldroyd GE, Eastmond PJ. 2017. Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science 356: 1175-1178.</Citation>
</Reference>
<Reference>
<Citation>Manck-Götzenberger J, Requena N. 2016. Arbuscular mycorrhiza symbiosis induces a major transcriptional reprogramming of the potato SWEET sugar transporter family. Frontiers in Plant Science 7: 487.</Citation>
</Reference>
<Reference>
<Citation>McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA. 1990. A new method which gives an objective measure of colonization of roots by vesicular arbuscular mycorrhizal fungi. New Phytologist 115: 495-501.</Citation>
</Reference>
<Reference>
<Citation>Moore JW, Herrera-Foessel S, Lan C, Schnippenkoetter W, Ayliffe M, Huerta-Espino J, Lillemo M, Viccars L, Milne R, Periyannan S et al. 2015. A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nature Genetics 47: 1494-1498.</Citation>
</Reference>
<Reference>
<Citation>Op den Camp RH, De Mita S, Lillo A, Cao Q, Limpens E, Bisseling T, Geurts R. 2011. A phylogenetic strategy based on a legume-specific whole genome duplication yields symbiotic cytokinin type-A response regulators. Plant Physiology 157: 2013-2022.</Citation>
</Reference>
<Reference>
<Citation>Pfeffer PE, Douds DD Jr, Becard G, Shachar-Hill Y. 1999. Carbon uptake and the metabolism and transport of lipids in an arbuscular mycorrhiza. Plant Physiology 120: 587-598.</Citation>
</Reference>
<Reference>
<Citation>Pimprikar P, Carbonnel S, Paries M, Katzer K, Klingl V, Bohmer MJ, Karl L, Floss DS, Harrison MJ, Parniske M. 2016. A CCaMK-CYCLOPS-DELLA complex activates transcription of RAM1 to regulate arbuscule branching. Current Biology 26: 987-998.</Citation>
</Reference>
<Reference>
<Citation>Rich MK, Nouri E, Courty P-E, Reinhardt D. 2017. Diet of arbuscular mycorrhizal fungi: bread and butter? Trends in Plant Science 22: 652-660.</Citation>
</Reference>
<Reference>
<Citation>Roth R, Paszkowski U. 2017. Plant carbon nourishment of arbuscular mycorrhizal fungi. Current Opinion in Plant Biology 39: 50-56.</Citation>
</Reference>
<Reference>
<Citation>Sauer N, Stolz J. 1994. SUC1 and SUC2: two sucrose transporters from Arabidopsis thaliana; expression and characterization in baker's yeast and identification of the histidine-tagged protein. The Plant Journal 6: 67-77.</Citation>
</Reference>
<Reference>
<Citation>Schaarschmidt S, Kopka J, Ludwig-Muller J, Hause B. 2007. Regulation of arbuscular mycorrhization by apoplastic invertases: enhanced invertase activity in the leaf apoplast affects the symbiotic interaction. The Plant Journal 51: 390-405.</Citation>
</Reference>
<Reference>
<Citation>Shachar-Hill Y, Pfeffer PE, Douds D, Osman SF, Doner LW, Ratcliffe RG. 1995. Partitioning of intermediary carbon metabolism in vesicular-arbuscular mycorrhizal leek. Plant Physiology 108: 7-15.</Citation>
</Reference>
<Reference>
<Citation>Smith SE, Read DJ. 2008. Mycorrhizal symbiosis. Cambridge, UK: Academic Press, 125-144.</Citation>
</Reference>
<Reference>
<Citation>Smith SE, Smith FA. 2011. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annual Review of Plant Biology 62: 227-250.</Citation>
</Reference>
<Reference>
<Citation>Solaiman MZ, Saito M. 1997. Use of sugars by intraradical hyphae of arbuscular mycorrhizal fungi revealed by radiorespirometry. New Phytologist 136: 533-538.</Citation>
</Reference>
<Reference>
<Citation>Sugimura Y, Saito K. 2017. Comparative transcriptome analysis between Solanum lycopersicum L. and Lotus japonicus L. during arbuscular mycorrhizal development. Soil Science and Plant Nutrition 63: 127-136.</Citation>
</Reference>
<Reference>
<Citation>Tadege M, Wen J, He J, Tu H, Kwak Y, Eschstruth A, Cayrel A, Endre G, Zhao PX, Chabaud M et al. 2008. Large-scale insertional mutagenesis using the Tnt1 retrotransposon in the model legume Medicago truncatula. The Plant Journal 54: 335-347.</Citation>
</Reference>
<Reference>
<Citation>Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution 30: 2725-2729.</Citation>
</Reference>
<Reference>
<Citation>Tang H, Krishnakumar V, Bidwell S, Rosen B, Chan A, Zhou S, Gentzbittel L, Childs K, Yandell M, Gundlach H et al. 2014. An improved genome release (version Mt4.0) for the model legume Medicago truncatula. BMC Genomics 15: 312.</Citation>
</Reference>
<Reference>
<Citation>Tao Y, Cheung LS, Li S, Eom JS, Chen LQ, Xu Y, Perry K, Frommer WB, Feng L. 2015. Structure of a eukaryotic SWEET transporter in a homotrimeric complex. Nature 527: 259-263.</Citation>
</Reference>
<Reference>
<Citation>Trouvelot A, Kough J, Gianinazzi-Pearson V. 1986. Evaluation of VA infection levels in root systems. Research for estimation methods having a functional significance. In: Gianinazzi-Pearson V, Gianinazzi S, eds. Physiological and genetical aspects of mycorrhizae. Paris, France: INRA, 217-221.</Citation>
</Reference>
<Reference>
<Citation>Wagner GP, Kin K, Lynch VJ. 2012. Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory in Biosciences 131: 281-285.</Citation>
</Reference>
<Reference>
<Citation>Wang W, Shi J, Xie Q, Jiang Y, Yu N, Wang E. 2017. Nutrient exchange and regulation in arbuscular mycorrhizal symbiosis. Molecular Plant 10: 1147-1158.</Citation>
</Reference>
<Reference>
<Citation>Wieczorke R, Krampe S, Weierstall T, Freidel K, Hollenberg CP, Boles E. 1999. Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. FEBS Letters 464: 123-128.</Citation>
</Reference>
<Reference>
<Citation>Xiao TT, Schilderink S, Moling S, Deinum EE, Kondorosi E, Franssen H, Kulikova O, Niebel A, Bisseling T. 2014. Fate map of Medicago truncatula root nodules. Development 141: 3517-3528.</Citation>
</Reference>
<Reference>
<Citation>Xuan YH, Hu YB, Chen LQ, Sosso D, Ducat DC, Hou BH, Frommer WB. 2013. Functional role of oligomerization for bacterial and plant SWEET sugar transporter family. Proceedings of the National Academy of Sciences, USA 110: 3685-3694.</Citation>
</Reference>
<Reference>
<Citation>Zeng T, Holmer R, Hontelez J, te Lintel-Hekkert B, Marufu L, de Zeeuw T, Wu FY, Schijlen E, Bisseling T, Limpens E. 2018. Host- and stage-dependent secretome of the arbuscular mycorrhizal fungus Rhizophagus irregularis. The Plant Journal 94: 411-425.</Citation>
</Reference>
<Reference>
<Citation>Zhang Q, Blaylock LA, Harrison MJ. 2010. Two Medicago truncatula half-ABC transporters are essential for arbuscule development in arbuscular mycorrhizal symbiosis. The Plant Cell 22: 1483-1497.</Citation>
</Reference>
<Reference>
<Citation>Zhao S, Chen A, Chen C, Li C, Xia R, Wang X. 2018. Transcriptomic analysis reveals the possible roles of sugar metabolism and export for positive mycorrhizal growth responses in soybean. Physiologia Plantarum. doi:10.1111/PPL.12847</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000445 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000445 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:31148173
   |texte=   A Medicago truncatula SWEET transporter implicated in arbuscule maintenance during arbuscular mycorrhizal symbiosis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:31148173" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020