Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Tripartite Interactions Between Endophytic Fungi, Arbuscular Mycorrhizal Fungi, and Leymus chinensis.

Identifieur interne : 000431 ( Main/Corpus ); précédent : 000430; suivant : 000432

Tripartite Interactions Between Endophytic Fungi, Arbuscular Mycorrhizal Fungi, and Leymus chinensis.

Auteurs : Hui Liu ; Man Wu ; Jinming Liu ; Yaobing Qu ; Yubao Gao ; Anzhi Ren

Source :

RBID : pubmed:31177395

English descriptors

Abstract

Grasses often establish multiple simultaneous symbiotic associations with endophytic fungi and arbuscular mycorrhizal fungi (AMF). Many studies have examined pair-wise interactions between plants and endophytic fungi or between plants and AMF, overlooking the interplays among multiple endosymbionts and their combined impacts on hosts. Here, we examined both the way in which each symbiont affects the other symbionts and the tripartite interactions between leaf endophytic fungi, AMF, and Leymus chinensis. As for AMF, different species (Glomus etunicatum, GE; Glomus mosseae, GM; Glomus claroideum, GC; and Glomus intraradices, GI) and AMF richness (no AMF, single AMF taxa, double AMF mixtures, triple AMF mixtures, and all four together) were considered. Our results showed that significant interactions were observed between endophytes and AMF, with endophytes interacting antagonistically with GM but synergistically with GI. No definitive interactions were observed between the endophytes and GE or GC. Additionally, the concentration of endophytes in the leaf sheath was positively correlated with the concentration of AMF in the roots under low AMF richness. The shoot biomass of L. chinensis was positively related to both endophyte concentration and AMF concentration, with only endophytes contributing to shoot biomass more than AMF. Endophytes and AMF increased shoot growth by contributing to phosphorus uptake. The interactive effects of endophytes and AMF on host growth were affected by the identity of AMF species. The beneficial effect of the endophytes decreased in response to GM but increased in response to GI. However, no influences were observed with other GC and GE. In addition, endophyte presence can alter the response of host plants to AMF richness. When leaf endophytes were absent, shoot biomass increased with higher AMF richness, only the influence of AMF species identity outweighed that of AMF richness. However, when leaf endophytes were present, no significant association was observed between AMF richness and shoot biomass. AMF species identity rather than AMF richness promoted shoot growth. The results of this study demonstrate that the outcomes of interspecific symbiotic interactions are very complex and vary with partner identity such that the effects of simultaneous symbioses cannot be generalized and highlight the need for studies to evaluate fitness response of all three species, as the interactive effects may not be the same for each partner.

DOI: 10.1007/s00248-019-01394-8
PubMed: 31177395

Links to Exploration step

pubmed:31177395

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Tripartite Interactions Between Endophytic Fungi, Arbuscular Mycorrhizal Fungi, and Leymus chinensis.</title>
<author>
<name sortKey="Liu, Hui" sort="Liu, Hui" uniqKey="Liu H" first="Hui" last="Liu">Hui Liu</name>
<affiliation>
<nlm:affiliation>College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wu, Man" sort="Wu, Man" uniqKey="Wu M" first="Man" last="Wu">Man Wu</name>
<affiliation>
<nlm:affiliation>College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liu, Jinming" sort="Liu, Jinming" uniqKey="Liu J" first="Jinming" last="Liu">Jinming Liu</name>
<affiliation>
<nlm:affiliation>College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Qu, Yaobing" sort="Qu, Yaobing" uniqKey="Qu Y" first="Yaobing" last="Qu">Yaobing Qu</name>
<affiliation>
<nlm:affiliation>College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gao, Yubao" sort="Gao, Yubao" uniqKey="Gao Y" first="Yubao" last="Gao">Yubao Gao</name>
<affiliation>
<nlm:affiliation>College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ren, Anzhi" sort="Ren, Anzhi" uniqKey="Ren A" first="Anzhi" last="Ren">Anzhi Ren</name>
<affiliation>
<nlm:affiliation>College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China. renanzhi@nankai.edu.cn.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31177395</idno>
<idno type="pmid">31177395</idno>
<idno type="doi">10.1007/s00248-019-01394-8</idno>
<idno type="wicri:Area/Main/Corpus">000431</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000431</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Tripartite Interactions Between Endophytic Fungi, Arbuscular Mycorrhizal Fungi, and Leymus chinensis.</title>
<author>
<name sortKey="Liu, Hui" sort="Liu, Hui" uniqKey="Liu H" first="Hui" last="Liu">Hui Liu</name>
<affiliation>
<nlm:affiliation>College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wu, Man" sort="Wu, Man" uniqKey="Wu M" first="Man" last="Wu">Man Wu</name>
<affiliation>
<nlm:affiliation>College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liu, Jinming" sort="Liu, Jinming" uniqKey="Liu J" first="Jinming" last="Liu">Jinming Liu</name>
<affiliation>
<nlm:affiliation>College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Qu, Yaobing" sort="Qu, Yaobing" uniqKey="Qu Y" first="Yaobing" last="Qu">Yaobing Qu</name>
<affiliation>
<nlm:affiliation>College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gao, Yubao" sort="Gao, Yubao" uniqKey="Gao Y" first="Yubao" last="Gao">Yubao Gao</name>
<affiliation>
<nlm:affiliation>College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ren, Anzhi" sort="Ren, Anzhi" uniqKey="Ren A" first="Anzhi" last="Ren">Anzhi Ren</name>
<affiliation>
<nlm:affiliation>College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China. renanzhi@nankai.edu.cn.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Microbial ecology</title>
<idno type="eISSN">1432-184X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Endophytes (physiology)</term>
<term>Glomeromycota (physiology)</term>
<term>Mycorrhizae (physiology)</term>
<term>Plant Roots (growth & development)</term>
<term>Plant Roots (microbiology)</term>
<term>Poaceae (growth & development)</term>
<term>Poaceae (microbiology)</term>
<term>Symbiosis (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Plant Roots</term>
<term>Poaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Roots</term>
<term>Poaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Endophytes</term>
<term>Glomeromycota</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Symbiosis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Grasses often establish multiple simultaneous symbiotic associations with endophytic fungi and arbuscular mycorrhizal fungi (AMF). Many studies have examined pair-wise interactions between plants and endophytic fungi or between plants and AMF, overlooking the interplays among multiple endosymbionts and their combined impacts on hosts. Here, we examined both the way in which each symbiont affects the other symbionts and the tripartite interactions between leaf endophytic fungi, AMF, and Leymus chinensis. As for AMF, different species (Glomus etunicatum, GE; Glomus mosseae, GM; Glomus claroideum, GC; and Glomus intraradices, GI) and AMF richness (no AMF, single AMF taxa, double AMF mixtures, triple AMF mixtures, and all four together) were considered. Our results showed that significant interactions were observed between endophytes and AMF, with endophytes interacting antagonistically with GM but synergistically with GI. No definitive interactions were observed between the endophytes and GE or GC. Additionally, the concentration of endophytes in the leaf sheath was positively correlated with the concentration of AMF in the roots under low AMF richness. The shoot biomass of L. chinensis was positively related to both endophyte concentration and AMF concentration, with only endophytes contributing to shoot biomass more than AMF. Endophytes and AMF increased shoot growth by contributing to phosphorus uptake. The interactive effects of endophytes and AMF on host growth were affected by the identity of AMF species. The beneficial effect of the endophytes decreased in response to GM but increased in response to GI. However, no influences were observed with other GC and GE. In addition, endophyte presence can alter the response of host plants to AMF richness. When leaf endophytes were absent, shoot biomass increased with higher AMF richness, only the influence of AMF species identity outweighed that of AMF richness. However, when leaf endophytes were present, no significant association was observed between AMF richness and shoot biomass. AMF species identity rather than AMF richness promoted shoot growth. The results of this study demonstrate that the outcomes of interspecific symbiotic interactions are very complex and vary with partner identity such that the effects of simultaneous symbioses cannot be generalized and highlight the need for studies to evaluate fitness response of all three species, as the interactive effects may not be the same for each partner.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31177395</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>05</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>05</Month>
<Day>27</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-184X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>79</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2020</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Microbial ecology</Title>
<ISOAbbreviation>Microb Ecol</ISOAbbreviation>
</Journal>
<ArticleTitle>Tripartite Interactions Between Endophytic Fungi, Arbuscular Mycorrhizal Fungi, and Leymus chinensis.</ArticleTitle>
<Pagination>
<MedlinePgn>98-109</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00248-019-01394-8</ELocationID>
<Abstract>
<AbstractText>Grasses often establish multiple simultaneous symbiotic associations with endophytic fungi and arbuscular mycorrhizal fungi (AMF). Many studies have examined pair-wise interactions between plants and endophytic fungi or between plants and AMF, overlooking the interplays among multiple endosymbionts and their combined impacts on hosts. Here, we examined both the way in which each symbiont affects the other symbionts and the tripartite interactions between leaf endophytic fungi, AMF, and Leymus chinensis. As for AMF, different species (Glomus etunicatum, GE; Glomus mosseae, GM; Glomus claroideum, GC; and Glomus intraradices, GI) and AMF richness (no AMF, single AMF taxa, double AMF mixtures, triple AMF mixtures, and all four together) were considered. Our results showed that significant interactions were observed between endophytes and AMF, with endophytes interacting antagonistically with GM but synergistically with GI. No definitive interactions were observed between the endophytes and GE or GC. Additionally, the concentration of endophytes in the leaf sheath was positively correlated with the concentration of AMF in the roots under low AMF richness. The shoot biomass of L. chinensis was positively related to both endophyte concentration and AMF concentration, with only endophytes contributing to shoot biomass more than AMF. Endophytes and AMF increased shoot growth by contributing to phosphorus uptake. The interactive effects of endophytes and AMF on host growth were affected by the identity of AMF species. The beneficial effect of the endophytes decreased in response to GM but increased in response to GI. However, no influences were observed with other GC and GE. In addition, endophyte presence can alter the response of host plants to AMF richness. When leaf endophytes were absent, shoot biomass increased with higher AMF richness, only the influence of AMF species identity outweighed that of AMF richness. However, when leaf endophytes were present, no significant association was observed between AMF richness and shoot biomass. AMF species identity rather than AMF richness promoted shoot growth. The results of this study demonstrate that the outcomes of interspecific symbiotic interactions are very complex and vary with partner identity such that the effects of simultaneous symbioses cannot be generalized and highlight the need for studies to evaluate fitness response of all three species, as the interactive effects may not be the same for each partner.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Hui</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Man</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Jinming</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Qu</LastName>
<ForeName>Yaobing</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gao</LastName>
<ForeName>Yubao</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ren</LastName>
<ForeName>Anzhi</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China. renanzhi@nankai.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>31570433</GrantID>
<Agency>National Natural Science Foundation of China</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>2016YFC0500702</GrantID>
<Agency>National Key Research and Development Program</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>06</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Microb Ecol</MedlineTA>
<NlmUniqueID>7500663</NlmUniqueID>
<ISSNLinking>0095-3628</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D060026" MajorTopicYN="N">Endophytes</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055137" MajorTopicYN="N">Glomeromycota</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006109" MajorTopicYN="N">Poaceae</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">AMF richness</Keyword>
<Keyword MajorTopicYN="N">AMF species identity</Keyword>
<Keyword MajorTopicYN="N">Arbuscular mycorrhizal fungi</Keyword>
<Keyword MajorTopicYN="N">Context dependency</Keyword>
<Keyword MajorTopicYN="N">Endophyte</Keyword>
<Keyword MajorTopicYN="N">Leymus chinensis</Keyword>
<Keyword MajorTopicYN="N">Mutualism</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>12</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>05</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>6</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>5</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>6</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31177395</ArticleId>
<ArticleId IdType="doi">10.1007/s00248-019-01394-8</ArticleId>
<ArticleId IdType="pii">10.1007/s00248-019-01394-8</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Ann Bot. 2004 Mar;93(3):295-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14744707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2012 Jul;145(3):440-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22289111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 May;114(1):1-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12223685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Evol. 2016 Nov 10;6(23):8595-8606</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28031810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2003 Oct;162(4 Suppl):S10-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14583854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2013 Mar;340(2):135-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23330647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2003 Feb;161(2):310-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12675375</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2018 Apr;28(3):301-314</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29502186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Entomol. 2009;54:323-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19067635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2013;9(2):e1003323</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23468653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2017 Nov;27(8):791-799</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28799077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Jul 31;7(1):6952</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28761108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2016 Jul;72(1):197-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26992401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2011 Jun;92(6):1303-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21797158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2004;55:315-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15377223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;177(3):779-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18042204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;182(2):314-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19236579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;172(3):554-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17083685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;173(4):787-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17286827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1987 Sep;73(3):358-362</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28311516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2006 Aug;9(4):358-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16713330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2018 Jul-Aug;110(4):654-665</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30130455</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000431 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000431 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:31177395
   |texte=   Tripartite Interactions Between Endophytic Fungi, Arbuscular Mycorrhizal Fungi, and Leymus chinensis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:31177395" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020