Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The leaf lipid composition of ectomycorrhizal oak plants shows a drought-tolerance signature.

Identifieur interne : 000307 ( Main/Corpus ); précédent : 000306; suivant : 000308

The leaf lipid composition of ectomycorrhizal oak plants shows a drought-tolerance signature.

Auteurs : M Nica Sebastiana ; Bernardo Duarte ; Filipa Monteiro ; Rui Malh ; Isabel Caçador ; Ana Rita Matos

Source :

RBID : pubmed:31568958

English descriptors

Abstract

Ectomycorrhizas have been reported to increase plant tolerance to drought. However, the mechanisms involved are not yet fully understood. Membranes are the first targets of degradation during drought, and growing evidences support a role for membrane lipids in plant tolerance and adaptation to drought. We have previously shown that improved tolerance of ectomycorrhizal oak plants to drought could be related to leaf membrane lipid metabolism, namely through an increased ability to sustain fatty acid content and composition, indicative of a higher membrane stability under stress. Here, we analysed in deeper detail the modulation of leaf lipid metabolism in oak plants mycorrhized with Pisolithus tinctorius and subjected to drought stress. Results show that mycorrhizal plants show patterns associated with water deficit tolerance, like a higher content of chloroplast lipids, whose levels are maintained upon drought stress. Likewise, mycorrhizal plants show increased levels of unsaturated fatty acids in the chloroplast phosphatidylglycerol lipid fraction. As a common response to drought, the digalactosyldiacyloglycerol/monogalactosyldiacyloglycerol ratio increased in the non-mycorrhizal plants, but not in the mycorrhizal plants, associated to smaller alterations in the expression of galactolipid metabolism genes, indicative of a higher drought tolerance. Under drought, inoculated plants showed increased expression of genes involved in neutral lipids biosynthesis, which could be related to an increased ability to tolerate drought stress. Overall, results from this study provide evidences of the involvement of lipid metabolism in the response of ectomycorrhizal plants to water deficit and point to an increased ability to maintain a stable chloroplast membrane functional integrity under stress.

DOI: 10.1016/j.plaphy.2019.09.032
PubMed: 31568958

Links to Exploration step

pubmed:31568958

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The leaf lipid composition of ectomycorrhizal oak plants shows a drought-tolerance signature.</title>
<author>
<name sortKey="Sebastiana, M Nica" sort="Sebastiana, M Nica" uniqKey="Sebastiana M" first="M Nica" last="Sebastiana">M Nica Sebastiana</name>
<affiliation>
<nlm:affiliation>Plant Functional Genomics Group, University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute. Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal. Electronic address: mgsebastiana@fc.ul.pt.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Duarte, Bernardo" sort="Duarte, Bernardo" uniqKey="Duarte B" first="Bernardo" last="Duarte">Bernardo Duarte</name>
<affiliation>
<nlm:affiliation>MARE - Marine and Environmental Sciences Centre. Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Monteiro, Filipa" sort="Monteiro, Filipa" uniqKey="Monteiro F" first="Filipa" last="Monteiro">Filipa Monteiro</name>
<affiliation>
<nlm:affiliation>Centre for Ecology, Evolution and Environmental Changes (CE3C). Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Malh, Rui" sort="Malh, Rui" uniqKey="Malh R" first="Rui" last="Malh">Rui Malh</name>
<affiliation>
<nlm:affiliation>Plant Functional Genomics Group, University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute. Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cacador, Isabel" sort="Cacador, Isabel" uniqKey="Cacador I" first="Isabel" last="Caçador">Isabel Caçador</name>
<affiliation>
<nlm:affiliation>MARE - Marine and Environmental Sciences Centre. Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Matos, Ana Rita" sort="Matos, Ana Rita" uniqKey="Matos A" first="Ana Rita" last="Matos">Ana Rita Matos</name>
<affiliation>
<nlm:affiliation>Plant Functional Genomics Group, University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute. Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31568958</idno>
<idno type="pmid">31568958</idno>
<idno type="doi">10.1016/j.plaphy.2019.09.032</idno>
<idno type="wicri:Area/Main/Corpus">000307</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000307</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The leaf lipid composition of ectomycorrhizal oak plants shows a drought-tolerance signature.</title>
<author>
<name sortKey="Sebastiana, M Nica" sort="Sebastiana, M Nica" uniqKey="Sebastiana M" first="M Nica" last="Sebastiana">M Nica Sebastiana</name>
<affiliation>
<nlm:affiliation>Plant Functional Genomics Group, University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute. Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal. Electronic address: mgsebastiana@fc.ul.pt.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Duarte, Bernardo" sort="Duarte, Bernardo" uniqKey="Duarte B" first="Bernardo" last="Duarte">Bernardo Duarte</name>
<affiliation>
<nlm:affiliation>MARE - Marine and Environmental Sciences Centre. Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Monteiro, Filipa" sort="Monteiro, Filipa" uniqKey="Monteiro F" first="Filipa" last="Monteiro">Filipa Monteiro</name>
<affiliation>
<nlm:affiliation>Centre for Ecology, Evolution and Environmental Changes (CE3C). Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Malh, Rui" sort="Malh, Rui" uniqKey="Malh R" first="Rui" last="Malh">Rui Malh</name>
<affiliation>
<nlm:affiliation>Plant Functional Genomics Group, University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute. Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cacador, Isabel" sort="Cacador, Isabel" uniqKey="Cacador I" first="Isabel" last="Caçador">Isabel Caçador</name>
<affiliation>
<nlm:affiliation>MARE - Marine and Environmental Sciences Centre. Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Matos, Ana Rita" sort="Matos, Ana Rita" uniqKey="Matos A" first="Ana Rita" last="Matos">Ana Rita Matos</name>
<affiliation>
<nlm:affiliation>Plant Functional Genomics Group, University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute. Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plant physiology and biochemistry : PPB</title>
<idno type="eISSN">1873-2690</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chloroplasts (metabolism)</term>
<term>Chloroplasts (physiology)</term>
<term>Droughts (MeSH)</term>
<term>Mycorrhizae (physiology)</term>
<term>Quercus (metabolism)</term>
<term>Quercus (physiology)</term>
<term>Symbiosis (physiology)</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Chloroplasts</term>
<term>Quercus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Chloroplasts</term>
<term>Mycorrhizae</term>
<term>Quercus</term>
<term>Symbiosis</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Droughts</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Ectomycorrhizas have been reported to increase plant tolerance to drought. However, the mechanisms involved are not yet fully understood. Membranes are the first targets of degradation during drought, and growing evidences support a role for membrane lipids in plant tolerance and adaptation to drought. We have previously shown that improved tolerance of ectomycorrhizal oak plants to drought could be related to leaf membrane lipid metabolism, namely through an increased ability to sustain fatty acid content and composition, indicative of a higher membrane stability under stress. Here, we analysed in deeper detail the modulation of leaf lipid metabolism in oak plants mycorrhized with Pisolithus tinctorius and subjected to drought stress. Results show that mycorrhizal plants show patterns associated with water deficit tolerance, like a higher content of chloroplast lipids, whose levels are maintained upon drought stress. Likewise, mycorrhizal plants show increased levels of unsaturated fatty acids in the chloroplast phosphatidylglycerol lipid fraction. As a common response to drought, the digalactosyldiacyloglycerol/monogalactosyldiacyloglycerol ratio increased in the non-mycorrhizal plants, but not in the mycorrhizal plants, associated to smaller alterations in the expression of galactolipid metabolism genes, indicative of a higher drought tolerance. Under drought, inoculated plants showed increased expression of genes involved in neutral lipids biosynthesis, which could be related to an increased ability to tolerate drought stress. Overall, results from this study provide evidences of the involvement of lipid metabolism in the response of ectomycorrhizal plants to water deficit and point to an increased ability to maintain a stable chloroplast membrane functional integrity under stress.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31568958</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>02</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1873-2690</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>144</Volume>
<PubDate>
<Year>2019</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology and biochemistry : PPB</Title>
<ISOAbbreviation>Plant Physiol Biochem</ISOAbbreviation>
</Journal>
<ArticleTitle>The leaf lipid composition of ectomycorrhizal oak plants shows a drought-tolerance signature.</ArticleTitle>
<Pagination>
<MedlinePgn>157-165</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S0981-9428(19)30376-6</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.plaphy.2019.09.032</ELocationID>
<Abstract>
<AbstractText>Ectomycorrhizas have been reported to increase plant tolerance to drought. However, the mechanisms involved are not yet fully understood. Membranes are the first targets of degradation during drought, and growing evidences support a role for membrane lipids in plant tolerance and adaptation to drought. We have previously shown that improved tolerance of ectomycorrhizal oak plants to drought could be related to leaf membrane lipid metabolism, namely through an increased ability to sustain fatty acid content and composition, indicative of a higher membrane stability under stress. Here, we analysed in deeper detail the modulation of leaf lipid metabolism in oak plants mycorrhized with Pisolithus tinctorius and subjected to drought stress. Results show that mycorrhizal plants show patterns associated with water deficit tolerance, like a higher content of chloroplast lipids, whose levels are maintained upon drought stress. Likewise, mycorrhizal plants show increased levels of unsaturated fatty acids in the chloroplast phosphatidylglycerol lipid fraction. As a common response to drought, the digalactosyldiacyloglycerol/monogalactosyldiacyloglycerol ratio increased in the non-mycorrhizal plants, but not in the mycorrhizal plants, associated to smaller alterations in the expression of galactolipid metabolism genes, indicative of a higher drought tolerance. Under drought, inoculated plants showed increased expression of genes involved in neutral lipids biosynthesis, which could be related to an increased ability to tolerate drought stress. Overall, results from this study provide evidences of the involvement of lipid metabolism in the response of ectomycorrhizal plants to water deficit and point to an increased ability to maintain a stable chloroplast membrane functional integrity under stress.</AbstractText>
<CopyrightInformation>Copyright © 2019. Published by Elsevier Masson SAS.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sebastiana</LastName>
<ForeName>Mónica</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Plant Functional Genomics Group, University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute. Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal. Electronic address: mgsebastiana@fc.ul.pt.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Duarte</LastName>
<ForeName>Bernardo</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>MARE - Marine and Environmental Sciences Centre. Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Monteiro</LastName>
<ForeName>Filipa</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Centre for Ecology, Evolution and Environmental Changes (CE3C). Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Malhó</LastName>
<ForeName>Rui</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Plant Functional Genomics Group, University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute. Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Caçador</LastName>
<ForeName>Isabel</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>MARE - Marine and Environmental Sciences Centre. Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Matos</LastName>
<ForeName>Ana Rita</ForeName>
<Initials>AR</Initials>
<AffiliationInfo>
<Affiliation>Plant Functional Genomics Group, University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute. Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>09</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>France</Country>
<MedlineTA>Plant Physiol Biochem</MedlineTA>
<NlmUniqueID>9882449</NlmUniqueID>
<ISSNLinking>0981-9428</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002736" MajorTopicYN="N">Chloroplasts</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055864" MajorTopicYN="Y">Droughts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029963" MajorTopicYN="N">Quercus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Drought</Keyword>
<Keyword MajorTopicYN="N">Ectomycorrhizas</Keyword>
<Keyword MajorTopicYN="N">Lipids</Keyword>
<Keyword MajorTopicYN="N">Oak</Keyword>
<Keyword MajorTopicYN="N">Pisolithus tinctorius</Keyword>
<Keyword MajorTopicYN="N">Stress</Keyword>
<Keyword MajorTopicYN="N">Symbiosis</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>05</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>09</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>09</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>10</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>2</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>10</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31568958</ArticleId>
<ArticleId IdType="pii">S0981-9428(19)30376-6</ArticleId>
<ArticleId IdType="doi">10.1016/j.plaphy.2019.09.032</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000307 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000307 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:31568958
   |texte=   The leaf lipid composition of ectomycorrhizal oak plants shows a drought-tolerance signature.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:31568958" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020