Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Exogenous abscisic acid and root volatiles increase sporulation of Rhizophagus irregularis DAOM 197198 in asymbiotic and pre-symbiotic status.

Identifieur interne : 000292 ( Main/Corpus ); précédent : 000291; suivant : 000293

Exogenous abscisic acid and root volatiles increase sporulation of Rhizophagus irregularis DAOM 197198 in asymbiotic and pre-symbiotic status.

Auteurs : Xiaodi Liu ; Zengwei Feng ; Honghui Zhu ; Qing Yao

Source :

RBID : pubmed:31617006

English descriptors

Abstract

Several studies have demonstrated asymbiotic growth and development of arbuscular mycorrhizal (AM) fungi, although AM fungi are regarded as obligately symbiotic root-inhabiting fungi. Phytohormones, root exudates, and volatiles are important factors regulating the host-AM fungi interaction. However, the effects of phytohormones, root exudates, and volatiles on asymbiotic (without roots present) or pre-symbiotic (with roots present but no colonization) sporulation of AM fungi are unexplored. In this study, we tested the asymbiotic sporulation of Rhizophagus irregularis DAOM 197198 and further investigated the influences of abscisic acid (ABA), the exudates, and volatiles of tomato hairy roots on asymbiotic or pre-symbiotic sporulation in vitro. Results indicated that mother spores asymbiotically and pre-symbiotically produced daughter spores singly or in pairs. Compared with symbiotically produced spores, pre-symbiotically produced spores were significantly smaller (43.1 μm vs. 89.2 μm in diameter). Exogenous ABA applied to mother spores significantly increased the number of daughter spores, and root volatiles also significantly promoted pre-symbiotic sporulation. Our results provide the first evidence that exogenous ABA can promote AM fungal asymbiotic and pre-symbiotic sporulation, which highlights the potential role of phytohormones in AM fungal propagation.

DOI: 10.1007/s00572-019-00916-z
PubMed: 31617006

Links to Exploration step

pubmed:31617006

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Exogenous abscisic acid and root volatiles increase sporulation of Rhizophagus irregularis DAOM 197198 in asymbiotic and pre-symbiotic status.</title>
<author>
<name sortKey="Liu, Xiaodi" sort="Liu, Xiaodi" uniqKey="Liu X" first="Xiaodi" last="Liu">Xiaodi Liu</name>
<affiliation>
<nlm:affiliation>College of Horticulture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangdong Engineering Research Center for Litchi, Guangdong Engineering Research Center for Grass Science, South China Agricultural University, Guangzhou, 510642, China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Guangdong Institute of Microbiology Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou, 510070, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Feng, Zengwei" sort="Feng, Zengwei" uniqKey="Feng Z" first="Zengwei" last="Feng">Zengwei Feng</name>
<affiliation>
<nlm:affiliation>College of Horticulture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangdong Engineering Research Center for Litchi, Guangdong Engineering Research Center for Grass Science, South China Agricultural University, Guangzhou, 510642, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhu, Honghui" sort="Zhu, Honghui" uniqKey="Zhu H" first="Honghui" last="Zhu">Honghui Zhu</name>
<affiliation>
<nlm:affiliation>Guangdong Institute of Microbiology Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou, 510070, China. zhuhh@gdim.cn.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yao, Qing" sort="Yao, Qing" uniqKey="Yao Q" first="Qing" last="Yao">Qing Yao</name>
<affiliation>
<nlm:affiliation>College of Horticulture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangdong Engineering Research Center for Litchi, Guangdong Engineering Research Center for Grass Science, South China Agricultural University, Guangzhou, 510642, China. yaoqscau@scau.edu.cn.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31617006</idno>
<idno type="pmid">31617006</idno>
<idno type="doi">10.1007/s00572-019-00916-z</idno>
<idno type="wicri:Area/Main/Corpus">000292</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000292</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Exogenous abscisic acid and root volatiles increase sporulation of Rhizophagus irregularis DAOM 197198 in asymbiotic and pre-symbiotic status.</title>
<author>
<name sortKey="Liu, Xiaodi" sort="Liu, Xiaodi" uniqKey="Liu X" first="Xiaodi" last="Liu">Xiaodi Liu</name>
<affiliation>
<nlm:affiliation>College of Horticulture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangdong Engineering Research Center for Litchi, Guangdong Engineering Research Center for Grass Science, South China Agricultural University, Guangzhou, 510642, China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Guangdong Institute of Microbiology Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou, 510070, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Feng, Zengwei" sort="Feng, Zengwei" uniqKey="Feng Z" first="Zengwei" last="Feng">Zengwei Feng</name>
<affiliation>
<nlm:affiliation>College of Horticulture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangdong Engineering Research Center for Litchi, Guangdong Engineering Research Center for Grass Science, South China Agricultural University, Guangzhou, 510642, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhu, Honghui" sort="Zhu, Honghui" uniqKey="Zhu H" first="Honghui" last="Zhu">Honghui Zhu</name>
<affiliation>
<nlm:affiliation>Guangdong Institute of Microbiology Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou, 510070, China. zhuhh@gdim.cn.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yao, Qing" sort="Yao, Qing" uniqKey="Yao Q" first="Qing" last="Yao">Qing Yao</name>
<affiliation>
<nlm:affiliation>College of Horticulture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangdong Engineering Research Center for Litchi, Guangdong Engineering Research Center for Grass Science, South China Agricultural University, Guangzhou, 510642, China. yaoqscau@scau.edu.cn.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Mycorrhiza</title>
<idno type="eISSN">1432-1890</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Abscisic Acid (MeSH)</term>
<term>Glomeromycota (MeSH)</term>
<term>Mycorrhizae (MeSH)</term>
<term>Plant Roots (MeSH)</term>
<term>Symbiosis (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Abscisic Acid</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Glomeromycota</term>
<term>Mycorrhizae</term>
<term>Plant Roots</term>
<term>Symbiosis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Several studies have demonstrated asymbiotic growth and development of arbuscular mycorrhizal (AM) fungi, although AM fungi are regarded as obligately symbiotic root-inhabiting fungi. Phytohormones, root exudates, and volatiles are important factors regulating the host-AM fungi interaction. However, the effects of phytohormones, root exudates, and volatiles on asymbiotic (without roots present) or pre-symbiotic (with roots present but no colonization) sporulation of AM fungi are unexplored. In this study, we tested the asymbiotic sporulation of Rhizophagus irregularis DAOM 197198 and further investigated the influences of abscisic acid (ABA), the exudates, and volatiles of tomato hairy roots on asymbiotic or pre-symbiotic sporulation in vitro. Results indicated that mother spores asymbiotically and pre-symbiotically produced daughter spores singly or in pairs. Compared with symbiotically produced spores, pre-symbiotically produced spores were significantly smaller (43.1 μm vs. 89.2 μm in diameter). Exogenous ABA applied to mother spores significantly increased the number of daughter spores, and root volatiles also significantly promoted pre-symbiotic sporulation. Our results provide the first evidence that exogenous ABA can promote AM fungal asymbiotic and pre-symbiotic sporulation, which highlights the potential role of phytohormones in AM fungal propagation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Automated" Owner="NLM">
<PMID Version="1">31617006</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>02</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1890</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>29</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2019</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Mycorrhiza</Title>
<ISOAbbreviation>Mycorrhiza</ISOAbbreviation>
</Journal>
<ArticleTitle>Exogenous abscisic acid and root volatiles increase sporulation of Rhizophagus irregularis DAOM 197198 in asymbiotic and pre-symbiotic status.</ArticleTitle>
<Pagination>
<MedlinePgn>581-589</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00572-019-00916-z</ELocationID>
<Abstract>
<AbstractText>Several studies have demonstrated asymbiotic growth and development of arbuscular mycorrhizal (AM) fungi, although AM fungi are regarded as obligately symbiotic root-inhabiting fungi. Phytohormones, root exudates, and volatiles are important factors regulating the host-AM fungi interaction. However, the effects of phytohormones, root exudates, and volatiles on asymbiotic (without roots present) or pre-symbiotic (with roots present but no colonization) sporulation of AM fungi are unexplored. In this study, we tested the asymbiotic sporulation of Rhizophagus irregularis DAOM 197198 and further investigated the influences of abscisic acid (ABA), the exudates, and volatiles of tomato hairy roots on asymbiotic or pre-symbiotic sporulation in vitro. Results indicated that mother spores asymbiotically and pre-symbiotically produced daughter spores singly or in pairs. Compared with symbiotically produced spores, pre-symbiotically produced spores were significantly smaller (43.1 μm vs. 89.2 μm in diameter). Exogenous ABA applied to mother spores significantly increased the number of daughter spores, and root volatiles also significantly promoted pre-symbiotic sporulation. Our results provide the first evidence that exogenous ABA can promote AM fungal asymbiotic and pre-symbiotic sporulation, which highlights the potential role of phytohormones in AM fungal propagation.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Xiaodi</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>College of Horticulture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangdong Engineering Research Center for Litchi, Guangdong Engineering Research Center for Grass Science, South China Agricultural University, Guangzhou, 510642, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Guangdong Institute of Microbiology Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou, 510070, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Feng</LastName>
<ForeName>Zengwei</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>College of Horticulture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangdong Engineering Research Center for Litchi, Guangdong Engineering Research Center for Grass Science, South China Agricultural University, Guangzhou, 510642, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhu</LastName>
<ForeName>Honghui</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Guangdong Institute of Microbiology Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou, 510070, China. zhuhh@gdim.cn.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yao</LastName>
<ForeName>Qing</ForeName>
<Initials>Q</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0003-3449-6166</Identifier>
<AffiliationInfo>
<Affiliation>College of Horticulture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangdong Engineering Research Center for Litchi, Guangdong Engineering Research Center for Grass Science, South China Agricultural University, Guangzhou, 510642, China. yaoqscau@scau.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>2018B020205001</GrantID>
<Agency>Guangdong Province Science and Technology Innovation Strategy Special Fund</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>31570395</GrantID>
<Agency>Natural Science Foundation of China</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>10</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Mycorrhiza</MedlineTA>
<NlmUniqueID>100955036</NlmUniqueID>
<ISSNLinking>0940-6360</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>72S9A8J5GW</RegistryNumber>
<NameOfSubstance UI="D000040">Abscisic Acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000040" MajorTopicYN="N">Abscisic Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055137" MajorTopicYN="Y">Glomeromycota</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="Y">Mycorrhizae</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Abscisic acid</Keyword>
<Keyword MajorTopicYN="N">Arbuscular mycorrhizal fungi</Keyword>
<Keyword MajorTopicYN="N">Asymbiotic sporulation</Keyword>
<Keyword MajorTopicYN="N">Pre-symbiotic sporulation</Keyword>
<Keyword MajorTopicYN="N">Rhizophagus irregularis DAOM 197198</Keyword>
<Keyword MajorTopicYN="N">Root exudates</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>07</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>09</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>10</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>2</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>10</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31617006</ArticleId>
<ArticleId IdType="doi">10.1007/s00572-019-00916-z</ArticleId>
<ArticleId IdType="pii">10.1007/s00572-019-00916-z</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mycorrhiza. 2017 Apr;27(3):201-210</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27838855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2006 Oct;87(10):2614-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17089669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Microbiol. 2018 Jun;124(6):1556-1565</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29392800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2015;66:161-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25621512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1992 Mar;58(3):821-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16348673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Jun 9;435(7043):824-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15944706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Food Microbiol. 2019 Aug;81:2-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30910084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20117-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24277808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2017 Oct 31;8:2104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29163398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Braz J Microbiol. 2016 Oct - Dec;47(4):853-862</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27381069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2018 Jun;23(6):513-522</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29731225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Feb;167(2):545-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25527715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Apr;190(1):193-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21232061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2016 Sep;10(9):2317-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26943626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Sep;166(1):281-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25096975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2006 Jan;254(2):258-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16445754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2017 Dec;36(12):1971-1984</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29038909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2018 Sep 27;18(1):211</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30261844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1991 Feb;57(2):434-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16348409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Sep 15;289(5486):1920-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10988069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2012 Jun 15;169(9):878-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22424572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2018 Sep;41(9):2093-2108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29469227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Biol. 2019 Apr;123(4):307-317</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30928039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Dec;166(4):2077-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25293963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2013 Jun 1;454-455:51-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23538136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2018 Dec;220(4):1059-1075</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29603232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2002 Apr;68(4):1919-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11916713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1992 Jul;99(3):952-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16669024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Sep;148(1):402-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18614712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2016 Sep;108(5):1028-1046</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27738200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;175(3):554-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17635230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2005 Jun;162(6):625-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16008085</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000292 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000292 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:31617006
   |texte=   Exogenous abscisic acid and root volatiles increase sporulation of Rhizophagus irregularis DAOM 197198 in asymbiotic and pre-symbiotic status.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:31617006" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020