Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Biosynthetic pathway of indole-3-acetic acid in ectomycorrhizal fungi collected from northern Thailand.

Identifieur interne : 000210 ( Main/Corpus ); précédent : 000209; suivant : 000211

Biosynthetic pathway of indole-3-acetic acid in ectomycorrhizal fungi collected from northern Thailand.

Auteurs : Jaturong Kumla ; Nakarin Suwannarach ; Kenji Matsui ; Saisamorn Lumyong

Source :

RBID : pubmed:31899917

English descriptors

Abstract

Indole-3-acetic acid (IAA) is an imperative phytohormone for plant growth and development. Ectomycorrhizal fungi (ECM) are able to produce IAA. However, only a few studies on IAA biosynthesis pathways in ECM fungi have been reported. This study aimed to investigate the IAA biosynthesis pathway of six ECM cultures including Astraeus odoratus, Gyrodon suthepensis, Phlebopus portentosus, Pisolithus albus, Pisolithus orientalis and Scleroderma suthepense. The results showed that all ECM fungi produced IAA in liquid medium that had been supplemented with L-tryptophan. Notably, fungal IAA levels vary for different fungal species. The detection of indole-3-lactic acid and indole-3-ethanol in the crude culture extracts of all ECM fungi indicated an enzymatic reduction of indole-3-pyruvic acid and indole-3-acetaldehyde, respectively in the IAA biosynthesis via the indole-3-pyruvic acid pathway. Moreover, the tryptophan aminotransferase activity confirmed that all ECM fungi synthesize IAA through the indole-3-pyruvic acid pathway. Additionally, the elongation of rice and oat coleoptiles was stimulated by crude culture extract. This is the first report of the biosynthesis pathway of IAA in the tested ECM fungi.

DOI: 10.1371/journal.pone.0227478
PubMed: 31899917
PubMed Central: PMC6941825

Links to Exploration step

pubmed:31899917

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Biosynthetic pathway of indole-3-acetic acid in ectomycorrhizal fungi collected from northern Thailand.</title>
<author>
<name sortKey="Kumla, Jaturong" sort="Kumla, Jaturong" uniqKey="Kumla J" first="Jaturong" last="Kumla">Jaturong Kumla</name>
<affiliation>
<nlm:affiliation>Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai Thailand.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Suwannarach, Nakarin" sort="Suwannarach, Nakarin" uniqKey="Suwannarach N" first="Nakarin" last="Suwannarach">Nakarin Suwannarach</name>
<affiliation>
<nlm:affiliation>Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai Thailand.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Matsui, Kenji" sort="Matsui, Kenji" uniqKey="Matsui K" first="Kenji" last="Matsui">Kenji Matsui</name>
<affiliation>
<nlm:affiliation>Graduate School of Sciences and Technology for Innovation, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 7 Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lumyong, Saisamorn" sort="Lumyong, Saisamorn" uniqKey="Lumyong S" first="Saisamorn" last="Lumyong">Saisamorn Lumyong</name>
<affiliation>
<nlm:affiliation>Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai Thailand.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Academy of Science, The Royal Society of Thailand, Bangkok, Thailand.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31899917</idno>
<idno type="pmid">31899917</idno>
<idno type="doi">10.1371/journal.pone.0227478</idno>
<idno type="pmc">PMC6941825</idno>
<idno type="wicri:Area/Main/Corpus">000210</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000210</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Biosynthetic pathway of indole-3-acetic acid in ectomycorrhizal fungi collected from northern Thailand.</title>
<author>
<name sortKey="Kumla, Jaturong" sort="Kumla, Jaturong" uniqKey="Kumla J" first="Jaturong" last="Kumla">Jaturong Kumla</name>
<affiliation>
<nlm:affiliation>Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai Thailand.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Suwannarach, Nakarin" sort="Suwannarach, Nakarin" uniqKey="Suwannarach N" first="Nakarin" last="Suwannarach">Nakarin Suwannarach</name>
<affiliation>
<nlm:affiliation>Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai Thailand.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Matsui, Kenji" sort="Matsui, Kenji" uniqKey="Matsui K" first="Kenji" last="Matsui">Kenji Matsui</name>
<affiliation>
<nlm:affiliation>Graduate School of Sciences and Technology for Innovation, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 7 Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lumyong, Saisamorn" sort="Lumyong, Saisamorn" uniqKey="Lumyong S" first="Saisamorn" last="Lumyong">Saisamorn Lumyong</name>
<affiliation>
<nlm:affiliation>Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai Thailand.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Academy of Science, The Royal Society of Thailand, Bangkok, Thailand.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Basidiomycota (metabolism)</term>
<term>Chromatography, High Pressure Liquid (MeSH)</term>
<term>Colorimetry (MeSH)</term>
<term>Fungal Proteins (metabolism)</term>
<term>Indoleacetic Acids (analysis)</term>
<term>Indoleacetic Acids (metabolism)</term>
<term>Mycorrhizae (metabolism)</term>
<term>Plant Growth Regulators (analysis)</term>
<term>Plant Growth Regulators (metabolism)</term>
<term>Tryptophan (metabolism)</term>
<term>Tryptophan Transaminase (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Indoleacetic Acids</term>
<term>Plant Growth Regulators</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Fungal Proteins</term>
<term>Indoleacetic Acids</term>
<term>Plant Growth Regulators</term>
<term>Tryptophan</term>
<term>Tryptophan Transaminase</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Basidiomycota</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Chromatography, High Pressure Liquid</term>
<term>Colorimetry</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Indole-3-acetic acid (IAA) is an imperative phytohormone for plant growth and development. Ectomycorrhizal fungi (ECM) are able to produce IAA. However, only a few studies on IAA biosynthesis pathways in ECM fungi have been reported. This study aimed to investigate the IAA biosynthesis pathway of six ECM cultures including Astraeus odoratus, Gyrodon suthepensis, Phlebopus portentosus, Pisolithus albus, Pisolithus orientalis and Scleroderma suthepense. The results showed that all ECM fungi produced IAA in liquid medium that had been supplemented with L-tryptophan. Notably, fungal IAA levels vary for different fungal species. The detection of indole-3-lactic acid and indole-3-ethanol in the crude culture extracts of all ECM fungi indicated an enzymatic reduction of indole-3-pyruvic acid and indole-3-acetaldehyde, respectively in the IAA biosynthesis via the indole-3-pyruvic acid pathway. Moreover, the tryptophan aminotransferase activity confirmed that all ECM fungi synthesize IAA through the indole-3-pyruvic acid pathway. Additionally, the elongation of rice and oat coleoptiles was stimulated by crude culture extract. This is the first report of the biosynthesis pathway of IAA in the tested ECM fungi.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31899917</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>04</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>15</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Biosynthetic pathway of indole-3-acetic acid in ectomycorrhizal fungi collected from northern Thailand.</ArticleTitle>
<Pagination>
<MedlinePgn>e0227478</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0227478</ELocationID>
<Abstract>
<AbstractText>Indole-3-acetic acid (IAA) is an imperative phytohormone for plant growth and development. Ectomycorrhizal fungi (ECM) are able to produce IAA. However, only a few studies on IAA biosynthesis pathways in ECM fungi have been reported. This study aimed to investigate the IAA biosynthesis pathway of six ECM cultures including Astraeus odoratus, Gyrodon suthepensis, Phlebopus portentosus, Pisolithus albus, Pisolithus orientalis and Scleroderma suthepense. The results showed that all ECM fungi produced IAA in liquid medium that had been supplemented with L-tryptophan. Notably, fungal IAA levels vary for different fungal species. The detection of indole-3-lactic acid and indole-3-ethanol in the crude culture extracts of all ECM fungi indicated an enzymatic reduction of indole-3-pyruvic acid and indole-3-acetaldehyde, respectively in the IAA biosynthesis via the indole-3-pyruvic acid pathway. Moreover, the tryptophan aminotransferase activity confirmed that all ECM fungi synthesize IAA through the indole-3-pyruvic acid pathway. Additionally, the elongation of rice and oat coleoptiles was stimulated by crude culture extract. This is the first report of the biosynthesis pathway of IAA in the tested ECM fungi.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kumla</LastName>
<ForeName>Jaturong</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai Thailand.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Suwannarach</LastName>
<ForeName>Nakarin</ForeName>
<Initials>N</Initials>
<Identifier Source="ORCID">0000-0002-2653-1913</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai Thailand.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Matsui</LastName>
<ForeName>Kenji</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Graduate School of Sciences and Technology for Innovation, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 7 Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lumyong</LastName>
<ForeName>Saisamorn</ForeName>
<Initials>S</Initials>
<Identifier Source="ORCID">0000-0002-6485-414X</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai Thailand.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Academy of Science, The Royal Society of Thailand, Bangkok, Thailand.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>01</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007210">Indoleacetic Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010937">Plant Growth Regulators</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>6U1S09C61L</RegistryNumber>
<NameOfSubstance UI="C030737">indoleacetic acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>8DUH1N11BX</RegistryNumber>
<NameOfSubstance UI="D014364">Tryptophan</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.6.1.27</RegistryNumber>
<NameOfSubstance UI="D051279">Tryptophan Transaminase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002851" MajorTopicYN="N">Chromatography, High Pressure Liquid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003124" MajorTopicYN="N">Colorimetry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007210" MajorTopicYN="N">Indoleacetic Acids</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010937" MajorTopicYN="N">Plant Growth Regulators</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014364" MajorTopicYN="N">Tryptophan</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051279" MajorTopicYN="N">Tryptophan Transaminase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<CoiStatement>The authors have declared that no competing interests exist.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>05</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>12</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>1</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>1</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>4</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31899917</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0227478</ArticleId>
<ArticleId IdType="pii">PONE-D-19-12875</ArticleId>
<ArticleId IdType="pmc">PMC6941825</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Front Microbiol. 2016 Oct 07;7:1572</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27774087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1997 Jun;48:51-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Microbiol. 2011 May;110(5):1235-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21332896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2010;61:49-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20192736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2018 Oct 18;13(10):e0205070</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30335811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2012 Jan;49(1):48-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22079545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2002 Dec;22(17):1231-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12464576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Perspect Biol. 2011 Apr 01;3(4):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21084388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1994 May 25;243(4):463-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8202090</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1987 Dec;53(12):2908-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16347506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Aug;150(4):2018-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19535471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2018 Aug 21;9:1848</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30186243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2010 Jul;48(7):596-601</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20188581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Res Microbiol. 2017 Apr;168(3):283-292</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27845247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chromatogr. 1977 Feb 11;132(2):267-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">188858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Oct;196(2):520-534</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22924530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2000 Oct;211(5):722-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11089686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antonie Van Leeuwenhoek. 2014 Jul;106(1):85-125</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24445491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Microbiol. 1991 Oct;137(10):2273-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1663150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2003 Sep 12;226(1):23-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13129603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2018 Feb 8;13(2):e0192293</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29420579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Dec;151(4):1902-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19812185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2007 Jul;31(4):425-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17509086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Res. 2007;162(1):69-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17140781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2015 Oct;81(20):7003-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26231639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 2000 Nov;264(4):521-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11129057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1998 Feb;18(2):103-111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12651394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Growth Regul. 2000 Jun;19(2):144-154</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11038224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2006 Nov;7(11):847-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16990790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1998 Dec;64(12):5030-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9835603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Dec 02;9(12):e114196</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25464336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2008 May;9(3):339-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18705875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antonie Van Leeuwenhoek. 2013 Mar;103(3):683-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23111785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Microbiol. 2016 Jul;198(5):429-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26899734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Dec;151(4):1991-2005</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19854859</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000210 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000210 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:31899917
   |texte=   Biosynthetic pathway of indole-3-acetic acid in ectomycorrhizal fungi collected from northern Thailand.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:31899917" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020