Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Fungal Endophytes of Alnus incana ssp. rugosa and Alnus alnobetula ssp. crispa and Their Potential to Tolerate Heavy Metals and to Promote Plant Growth.

Identifieur interne : 000179 ( Main/Corpus ); précédent : 000178; suivant : 000180

Fungal Endophytes of Alnus incana ssp. rugosa and Alnus alnobetula ssp. crispa and Their Potential to Tolerate Heavy Metals and to Promote Plant Growth.

Auteurs : Steve Lalancette ; Sylvain Lerat ; Sébastien Roy ; Carole Beaulieu

Source :

RBID : pubmed:32010463

Abstract

Soil contamination by metals is of particular interest, given that their retention times within the profile can be indefinite. Thus, phytostabilization can be viewed as a means of limiting metal toxicity in soils. Due to their ability to grow on contaminated soils, alders have repeatedly been used as key species in phytostabilization efforts. Alder ability to grow on contaminated sites stems, in part, from its association with microbial endophytes. This work emphasizes the fungal endophytes populations associated with Alnus incana ssp. rugosa and Alnus alnobetula ssp. crispa (previously A. viridis ssp. crispa) under a phytostabilization angle. Fungal endophytes were isolated from alder trees that were growing on or near disturbed environments; their tolerances to Cu, Ni, Zn, and As, and acidic pH (4.3, 3, and 2) were subsequently assessed. Cryptosporiopsis spp. and Rhizoscyphus spp. were identified as fungal endophytes of Alnus for the first time. When used as inoculants for alder, some isolates promoted plant growth, while others apparently presented antagonistic relationships with the host plant. This study reports the first step in finding the right fungal endophytic partners for two species of alder used in phytostabilization of metal-contaminated mining sites.

DOI: 10.1080/12298093.2019.1660297
PubMed: 32010463
PubMed Central: PMC6968708

Links to Exploration step

pubmed:32010463

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Fungal Endophytes of
<i>Alnus incana</i>
ssp.
<i>rugosa</i>
and
<i>Alnus alnobetula</i>
ssp.
<i>crispa</i>
and Their Potential to Tolerate Heavy Metals and to Promote Plant Growth.</title>
<author>
<name sortKey="Lalancette, Steve" sort="Lalancette, Steve" uniqKey="Lalancette S" first="Steve" last="Lalancette">Steve Lalancette</name>
<affiliation>
<nlm:affiliation>Département de Biologie, Université de Sherbrooke, Sherbrooke, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lerat, Sylvain" sort="Lerat, Sylvain" uniqKey="Lerat S" first="Sylvain" last="Lerat">Sylvain Lerat</name>
<affiliation>
<nlm:affiliation>Département de Biologie, Université de Sherbrooke, Sherbrooke, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Roy, Sebastien" sort="Roy, Sebastien" uniqKey="Roy S" first="Sébastien" last="Roy">Sébastien Roy</name>
<affiliation>
<nlm:affiliation>Département de Biologie, Université de Sherbrooke, Sherbrooke, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Beaulieu, Carole" sort="Beaulieu, Carole" uniqKey="Beaulieu C" first="Carole" last="Beaulieu">Carole Beaulieu</name>
<affiliation>
<nlm:affiliation>Département de Biologie, Université de Sherbrooke, Sherbrooke, Canada.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:32010463</idno>
<idno type="pmid">32010463</idno>
<idno type="doi">10.1080/12298093.2019.1660297</idno>
<idno type="pmc">PMC6968708</idno>
<idno type="wicri:Area/Main/Corpus">000179</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000179</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Fungal Endophytes of
<i>Alnus incana</i>
ssp.
<i>rugosa</i>
and
<i>Alnus alnobetula</i>
ssp.
<i>crispa</i>
and Their Potential to Tolerate Heavy Metals and to Promote Plant Growth.</title>
<author>
<name sortKey="Lalancette, Steve" sort="Lalancette, Steve" uniqKey="Lalancette S" first="Steve" last="Lalancette">Steve Lalancette</name>
<affiliation>
<nlm:affiliation>Département de Biologie, Université de Sherbrooke, Sherbrooke, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lerat, Sylvain" sort="Lerat, Sylvain" uniqKey="Lerat S" first="Sylvain" last="Lerat">Sylvain Lerat</name>
<affiliation>
<nlm:affiliation>Département de Biologie, Université de Sherbrooke, Sherbrooke, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Roy, Sebastien" sort="Roy, Sebastien" uniqKey="Roy S" first="Sébastien" last="Roy">Sébastien Roy</name>
<affiliation>
<nlm:affiliation>Département de Biologie, Université de Sherbrooke, Sherbrooke, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Beaulieu, Carole" sort="Beaulieu, Carole" uniqKey="Beaulieu C" first="Carole" last="Beaulieu">Carole Beaulieu</name>
<affiliation>
<nlm:affiliation>Département de Biologie, Université de Sherbrooke, Sherbrooke, Canada.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Mycobiology</title>
<idno type="ISSN">1229-8093</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Soil contamination by metals is of particular interest, given that their retention times within the profile can be indefinite. Thus, phytostabilization can be viewed as a means of limiting metal toxicity in soils. Due to their ability to grow on contaminated soils, alders have repeatedly been used as key species in phytostabilization efforts. Alder ability to grow on contaminated sites stems, in part, from its association with microbial endophytes. This work emphasizes the fungal endophytes populations associated with
<i>Alnus incana</i>
ssp.
<i>rugosa</i>
and
<i>Alnus alnobetula</i>
ssp.
<i>crispa</i>
(previously
<i>A. viridis</i>
ssp.
<i>crispa</i>
) under a phytostabilization angle. Fungal endophytes were isolated from alder trees that were growing on or near disturbed environments; their tolerances to Cu, Ni, Zn, and As, and acidic pH (4.3, 3, and 2) were subsequently assessed.
<i>Cryptosporiopsis</i>
spp. and
<i>Rhizoscyphus</i>
spp. were identified as fungal endophytes of
<i>Alnus</i>
for the first time. When used as inoculants for alder, some isolates promoted plant growth, while others apparently presented antagonistic relationships with the host plant. This study reports the first step in finding the right fungal endophytic partners for two species of alder used in phytostabilization of metal-contaminated mining sites.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32010463</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1229-8093</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>47</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2019</Year>
</PubDate>
</JournalIssue>
<Title>Mycobiology</Title>
<ISOAbbreviation>Mycobiology</ISOAbbreviation>
</Journal>
<ArticleTitle>Fungal Endophytes of
<i>Alnus incana</i>
ssp.
<i>rugosa</i>
and
<i>Alnus alnobetula</i>
ssp.
<i>crispa</i>
and Their Potential to Tolerate Heavy Metals and to Promote Plant Growth.</ArticleTitle>
<Pagination>
<MedlinePgn>415-429</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1080/12298093.2019.1660297</ELocationID>
<Abstract>
<AbstractText>Soil contamination by metals is of particular interest, given that their retention times within the profile can be indefinite. Thus, phytostabilization can be viewed as a means of limiting metal toxicity in soils. Due to their ability to grow on contaminated soils, alders have repeatedly been used as key species in phytostabilization efforts. Alder ability to grow on contaminated sites stems, in part, from its association with microbial endophytes. This work emphasizes the fungal endophytes populations associated with
<i>Alnus incana</i>
ssp.
<i>rugosa</i>
and
<i>Alnus alnobetula</i>
ssp.
<i>crispa</i>
(previously
<i>A. viridis</i>
ssp.
<i>crispa</i>
) under a phytostabilization angle. Fungal endophytes were isolated from alder trees that were growing on or near disturbed environments; their tolerances to Cu, Ni, Zn, and As, and acidic pH (4.3, 3, and 2) were subsequently assessed.
<i>Cryptosporiopsis</i>
spp. and
<i>Rhizoscyphus</i>
spp. were identified as fungal endophytes of
<i>Alnus</i>
for the first time. When used as inoculants for alder, some isolates promoted plant growth, while others apparently presented antagonistic relationships with the host plant. This study reports the first step in finding the right fungal endophytic partners for two species of alder used in phytostabilization of metal-contaminated mining sites.</AbstractText>
<CopyrightInformation>© 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group on behalf of the Korean Society of Mycology.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lalancette</LastName>
<ForeName>Steve</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Département de Biologie, Université de Sherbrooke, Sherbrooke, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lerat</LastName>
<ForeName>Sylvain</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Département de Biologie, Université de Sherbrooke, Sherbrooke, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Roy</LastName>
<ForeName>Sébastien</ForeName>
<Initials>S</Initials>
<Identifier Source="ORCID">0000-0001-7183-0691</Identifier>
<AffiliationInfo>
<Affiliation>Département de Biologie, Université de Sherbrooke, Sherbrooke, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Beaulieu</LastName>
<ForeName>Carole</ForeName>
<Initials>C</Initials>
<Identifier Source="ORCID">0000-0001-7400-5179</Identifier>
<AffiliationInfo>
<Affiliation>Département de Biologie, Université de Sherbrooke, Sherbrooke, Canada.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>09</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Korea (South)</Country>
<MedlineTA>Mycobiology</MedlineTA>
<NlmUniqueID>100960027</NlmUniqueID>
<ISSNLinking>1229-8093</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Alder</Keyword>
<Keyword MajorTopicYN="N">dark septate endophyte</Keyword>
<Keyword MajorTopicYN="N">ericoid mycorrhizae</Keyword>
<Keyword MajorTopicYN="N">phytostabilization</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>05</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>08</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>08</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>2</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>2</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>2</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32010463</ArticleId>
<ArticleId IdType="doi">10.1080/12298093.2019.1660297</ArticleId>
<ArticleId IdType="pii">1660297</ArticleId>
<ArticleId IdType="pmc">PMC6968708</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mycologia. 2010 Jul-Aug;102(4):813-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20648749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2009 Nov;20(1):1-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19495811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2011 Oct 1;409(21):4504-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21871650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Jun;198(4):1239-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23421531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2013 Apr;11(4):252-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23493145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Jun;198(4):1228-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23496225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1987 Jul;4(4):406-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3447015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 May;190(3):783-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21244432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2002 May;53(372):1351-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11997381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 1969 Apr;59(4):411-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5811914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2013 Feb;23(2):119-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22983627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Basic Microbiol. 2007 Aug;47(4):295-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17647207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2016 Jul;33(7):1870-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27004904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Apr;202(1):287-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24320607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 1998 Feb;7(5):261-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24578052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2012 Apr;14(4):1064-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22212126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 1980 Dec;16(2):111-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7463489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PeerJ. 2014 Dec 16;2:e686</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25548729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Suppl. 2012;101:133-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22945569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2005 May;15(3):149-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15883852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Jan 12;282(2):947-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17107946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2016 Oct;92(10):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27364359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2011 Sep;13(9):2508-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21812887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Adv. 2012 Nov-Dec;30(6):1562-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22580219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1998 Dec;64(12):5004-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9835596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2015 Nov;138:300-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26091871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Microbiol. 2001 Aug;47(8):741-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11575501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biometals. 2007 Jun;20(3-4):233-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17219055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2013 Mar;83(3):767-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23078526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2006 Nov;16(8):553-558</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17033817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2006 Jan;254(2):173-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16445743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;182(3):727-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19320837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Phytoremediation. 2017 Dec 2;19(12):1118-1125</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28521510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(10):e47968</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23118914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2009 Dec 1;407(24):6179-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19772938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Feb 16;7:96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26909085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol Interact. 2014 Dec 5;224:183-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25446860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Enzyme Microb Technol. 1996 Sep;19(4):311-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8987489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2007 May 25;581(12):2263-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17462635</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000179 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000179 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:32010463
   |texte=   Fungal Endophytes of Alnus incana ssp. rugosa and Alnus alnobetula ssp. crispa and Their Potential to Tolerate Heavy Metals and to Promote Plant Growth.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:32010463" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020