Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Dead Rhizophagus irregularis biomass mysteriously stimulates plant growth.

Identifieur interne : 000166 ( Main/Corpus ); précédent : 000165; suivant : 000167

Dead Rhizophagus irregularis biomass mysteriously stimulates plant growth.

Auteurs : Jan Jansa ; Petr Šmilauer ; Jan Borovi Ka ; Hana Hršelová ; Sándor T. Forczek ; Krist Na Slámová ; Tomáš Ezanka ; Martin Rozmoš ; Petra Bukovská ; Milan Gryndler

Source :

RBID : pubmed:32062707

English descriptors

Abstract

Arbuscular mycorrhizal (AM) fungi establish symbiotic associations with many plant species, transferring significant amounts of soil nutrients such as phosphorus to plants and receiving photosynthetically fixed carbon in return. Functioning of AM symbiosis is thus based on interaction between two living partners. The importance of dead AM fungal biomass (necromass) in ecosystem processes remains unclear. Here, we applied either living biomass or necromass (0.0004 potting substrate weight percent) of monoxenically produced AM fungus (Rhizophagus irregularis) into previously sterilized potting substrate planted with Andropogon gerardii. Plant biomass production significantly improved in both treatments as compared to non-amended controls. Living AM fungus, in contrast to the necromass, specifically improved plant acquisition of nutrients normally supplied to the plants by AM fungal networks, such as phosphorus and zinc. There was, however, no difference between the two amendment treatments with respect to plant uptake of other nutrients such as nitrogen and/or magnesium, indicating that the effect on plants of the AM fungal necromass was not primarily nutritional. Plant growth stimulation by the necromass could thus be either due to AM fungal metabolites directly affecting the plants, indirectly due to changes in soil/root microbiomes or due to physicochemical modifications of the potting substrate. In the necromass, we identified several potentially bioactive molecules. We also provide experimental evidence for significant differences in underground microbiomes depending on the amendment with living or dead AM fungal biomass. This research thus provides the first glimpse into possible mechanisms responsible for observed plant growth stimulation by the AM fungal necromass.

DOI: 10.1007/s00572-020-00937-z
PubMed: 32062707

Links to Exploration step

pubmed:32062707

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Dead Rhizophagus irregularis biomass mysteriously stimulates plant growth.</title>
<author>
<name sortKey="Jansa, Jan" sort="Jansa, Jan" uniqKey="Jansa J" first="Jan" last="Jansa">Jan Jansa</name>
<affiliation>
<nlm:affiliation>Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic. jansa@biomed.cas.cz.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Smilauer, Petr" sort="Smilauer, Petr" uniqKey="Smilauer P" first="Petr" last="Šmilauer">Petr Šmilauer</name>
<affiliation>
<nlm:affiliation>Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Borovi Ka, Jan" sort="Borovi Ka, Jan" uniqKey="Borovi Ka J" first="Jan" last="Borovi Ka">Jan Borovi Ka</name>
<affiliation>
<nlm:affiliation>Institute of Geology, Czech Academy of Sciences, Rozvojová 269, 165 00, Prague 6, Czech Republic.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hrselova, Hana" sort="Hrselova, Hana" uniqKey="Hrselova H" first="Hana" last="Hršelová">Hana Hršelová</name>
<affiliation>
<nlm:affiliation>Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Forczek, Sandor T" sort="Forczek, Sandor T" uniqKey="Forczek S" first="Sándor T" last="Forczek">Sándor T. Forczek</name>
<affiliation>
<nlm:affiliation>Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Isotope Laboratory, Institute of Experimental Botany, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Slamova, Krist Na" sort="Slamova, Krist Na" uniqKey="Slamova K" first="Krist Na" last="Slámová">Krist Na Slámová</name>
<affiliation>
<nlm:affiliation>Laboratory of Biotransformation, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey=" Ezanka, Tomas" sort=" Ezanka, Tomas" uniqKey=" Ezanka T" first="Tomáš" last=" Ezanka">Tomáš Ezanka</name>
<affiliation>
<nlm:affiliation>Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rozmos, Martin" sort="Rozmos, Martin" uniqKey="Rozmos M" first="Martin" last="Rozmoš">Martin Rozmoš</name>
<affiliation>
<nlm:affiliation>Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bukovska, Petra" sort="Bukovska, Petra" uniqKey="Bukovska P" first="Petra" last="Bukovská">Petra Bukovská</name>
<affiliation>
<nlm:affiliation>Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gryndler, Milan" sort="Gryndler, Milan" uniqKey="Gryndler M" first="Milan" last="Gryndler">Milan Gryndler</name>
<affiliation>
<nlm:affiliation>Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, České mládeže 8, 400 96, Ústí nad Labem, Czech Republic.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32062707</idno>
<idno type="pmid">32062707</idno>
<idno type="doi">10.1007/s00572-020-00937-z</idno>
<idno type="wicri:Area/Main/Corpus">000166</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000166</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Dead Rhizophagus irregularis biomass mysteriously stimulates plant growth.</title>
<author>
<name sortKey="Jansa, Jan" sort="Jansa, Jan" uniqKey="Jansa J" first="Jan" last="Jansa">Jan Jansa</name>
<affiliation>
<nlm:affiliation>Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic. jansa@biomed.cas.cz.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Smilauer, Petr" sort="Smilauer, Petr" uniqKey="Smilauer P" first="Petr" last="Šmilauer">Petr Šmilauer</name>
<affiliation>
<nlm:affiliation>Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Borovi Ka, Jan" sort="Borovi Ka, Jan" uniqKey="Borovi Ka J" first="Jan" last="Borovi Ka">Jan Borovi Ka</name>
<affiliation>
<nlm:affiliation>Institute of Geology, Czech Academy of Sciences, Rozvojová 269, 165 00, Prague 6, Czech Republic.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hrselova, Hana" sort="Hrselova, Hana" uniqKey="Hrselova H" first="Hana" last="Hršelová">Hana Hršelová</name>
<affiliation>
<nlm:affiliation>Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Forczek, Sandor T" sort="Forczek, Sandor T" uniqKey="Forczek S" first="Sándor T" last="Forczek">Sándor T. Forczek</name>
<affiliation>
<nlm:affiliation>Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Isotope Laboratory, Institute of Experimental Botany, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Slamova, Krist Na" sort="Slamova, Krist Na" uniqKey="Slamova K" first="Krist Na" last="Slámová">Krist Na Slámová</name>
<affiliation>
<nlm:affiliation>Laboratory of Biotransformation, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey=" Ezanka, Tomas" sort=" Ezanka, Tomas" uniqKey=" Ezanka T" first="Tomáš" last=" Ezanka">Tomáš Ezanka</name>
<affiliation>
<nlm:affiliation>Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rozmos, Martin" sort="Rozmos, Martin" uniqKey="Rozmos M" first="Martin" last="Rozmoš">Martin Rozmoš</name>
<affiliation>
<nlm:affiliation>Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bukovska, Petra" sort="Bukovska, Petra" uniqKey="Bukovska P" first="Petra" last="Bukovská">Petra Bukovská</name>
<affiliation>
<nlm:affiliation>Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gryndler, Milan" sort="Gryndler, Milan" uniqKey="Gryndler M" first="Milan" last="Gryndler">Milan Gryndler</name>
<affiliation>
<nlm:affiliation>Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, České mládeže 8, 400 96, Ústí nad Labem, Czech Republic.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Mycorrhiza</title>
<idno type="eISSN">1432-1890</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Andropogon (MeSH)</term>
<term>Biomass (MeSH)</term>
<term>Glomeromycota (MeSH)</term>
<term>Mycorrhizae (MeSH)</term>
<term>Plant Roots (MeSH)</term>
<term>Symbiosis (MeSH)</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Andropogon</term>
<term>Biomass</term>
<term>Glomeromycota</term>
<term>Mycorrhizae</term>
<term>Plant Roots</term>
<term>Symbiosis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Arbuscular mycorrhizal (AM) fungi establish symbiotic associations with many plant species, transferring significant amounts of soil nutrients such as phosphorus to plants and receiving photosynthetically fixed carbon in return. Functioning of AM symbiosis is thus based on interaction between two living partners. The importance of dead AM fungal biomass (necromass) in ecosystem processes remains unclear. Here, we applied either living biomass or necromass (0.0004 potting substrate weight percent) of monoxenically produced AM fungus (Rhizophagus irregularis) into previously sterilized potting substrate planted with Andropogon gerardii. Plant biomass production significantly improved in both treatments as compared to non-amended controls. Living AM fungus, in contrast to the necromass, specifically improved plant acquisition of nutrients normally supplied to the plants by AM fungal networks, such as phosphorus and zinc. There was, however, no difference between the two amendment treatments with respect to plant uptake of other nutrients such as nitrogen and/or magnesium, indicating that the effect on plants of the AM fungal necromass was not primarily nutritional. Plant growth stimulation by the necromass could thus be either due to AM fungal metabolites directly affecting the plants, indirectly due to changes in soil/root microbiomes or due to physicochemical modifications of the potting substrate. In the necromass, we identified several potentially bioactive molecules. We also provide experimental evidence for significant differences in underground microbiomes depending on the amendment with living or dead AM fungal biomass. This research thus provides the first glimpse into possible mechanisms responsible for observed plant growth stimulation by the AM fungal necromass.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Automated" Owner="NLM">
<PMID Version="1">32062707</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>03</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1890</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>30</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2020</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Mycorrhiza</Title>
<ISOAbbreviation>Mycorrhiza</ISOAbbreviation>
</Journal>
<ArticleTitle>Dead Rhizophagus irregularis biomass mysteriously stimulates plant growth.</ArticleTitle>
<Pagination>
<MedlinePgn>63-77</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00572-020-00937-z</ELocationID>
<Abstract>
<AbstractText>Arbuscular mycorrhizal (AM) fungi establish symbiotic associations with many plant species, transferring significant amounts of soil nutrients such as phosphorus to plants and receiving photosynthetically fixed carbon in return. Functioning of AM symbiosis is thus based on interaction between two living partners. The importance of dead AM fungal biomass (necromass) in ecosystem processes remains unclear. Here, we applied either living biomass or necromass (0.0004 potting substrate weight percent) of monoxenically produced AM fungus (Rhizophagus irregularis) into previously sterilized potting substrate planted with Andropogon gerardii. Plant biomass production significantly improved in both treatments as compared to non-amended controls. Living AM fungus, in contrast to the necromass, specifically improved plant acquisition of nutrients normally supplied to the plants by AM fungal networks, such as phosphorus and zinc. There was, however, no difference between the two amendment treatments with respect to plant uptake of other nutrients such as nitrogen and/or magnesium, indicating that the effect on plants of the AM fungal necromass was not primarily nutritional. Plant growth stimulation by the necromass could thus be either due to AM fungal metabolites directly affecting the plants, indirectly due to changes in soil/root microbiomes or due to physicochemical modifications of the potting substrate. In the necromass, we identified several potentially bioactive molecules. We also provide experimental evidence for significant differences in underground microbiomes depending on the amendment with living or dead AM fungal biomass. This research thus provides the first glimpse into possible mechanisms responsible for observed plant growth stimulation by the AM fungal necromass.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Jansa</LastName>
<ForeName>Jan</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-0331-1774</Identifier>
<AffiliationInfo>
<Affiliation>Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic. jansa@biomed.cas.cz.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Šmilauer</LastName>
<ForeName>Petr</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Borovička</LastName>
<ForeName>Jan</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Institute of Geology, Czech Academy of Sciences, Rozvojová 269, 165 00, Prague 6, Czech Republic.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hršelová</LastName>
<ForeName>Hana</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Forczek</LastName>
<ForeName>Sándor T</ForeName>
<Initials>ST</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Isotope Laboratory, Institute of Experimental Botany, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Slámová</LastName>
<ForeName>Kristýna</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Biotransformation, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Řezanka</LastName>
<ForeName>Tomáš</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rozmoš</LastName>
<ForeName>Martin</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bukovská</LastName>
<ForeName>Petra</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gryndler</LastName>
<ForeName>Milan</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, České mládeže 8, 400 96, Ústí nad Labem, Czech Republic.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P504-12-1665</GrantID>
<Agency>Grantová Agentura České Republiky (CZ)</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>18-04892S</GrantID>
<Agency>Grantová Agentura České Republiky (CZ)</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>LK11224</GrantID>
<Agency>Ministerstvo Školství, Mládeže a Tělovýchovy (CZ)</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>RVO61388971</GrantID>
<Agency>Akademie Věd České Republiky</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>RVO 67985831</GrantID>
<Agency>Akademie Věd České Republiky (CZ)</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>02</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Mycorrhiza</MedlineTA>
<NlmUniqueID>100955036</NlmUniqueID>
<ISSNLinking>0940-6360</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D031722" MajorTopicYN="Y">Andropogon</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="N">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055137" MajorTopicYN="Y">Glomeromycota</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="Y">Mycorrhizae</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Arbuscular mycorrhiza (AM)</Keyword>
<Keyword MajorTopicYN="N">Mass spectrometry (MS)</Keyword>
<Keyword MajorTopicYN="N">Metabolites</Keyword>
<Keyword MajorTopicYN="N">Microbiome</Keyword>
<Keyword MajorTopicYN="N">Necromass</Keyword>
<Keyword MajorTopicYN="N">Signal</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>10</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>02</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>2</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>3</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>2</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32062707</ArticleId>
<ArticleId IdType="doi">10.1007/s00572-020-00937-z</ArticleId>
<ArticleId IdType="pii">10.1007/s00572-020-00937-z</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>FEMS Microbiol Ecol. 2012 Dec;82(3):666-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22738186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2015 Mar;20(3):150-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25583176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2014 Aug;79(3):398-412</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24888347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 May;20(5):1407-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18515499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2006 Aug 1;177(3):1805-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16849491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochimie. 2017 Oct;141:21-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28522365</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2018 Dec;220(4):1059-1075</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29603232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Jul 13;282(28):20705-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17510062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Apr;198(1):203-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23356215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2018 Feb;33(2):129-142</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29241940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Aug 12;333(6044):880-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21836016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Apr;198(1):190-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23384011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Mar;205(4):1406-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25639293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Mar 27;8:390</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28396674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2018 Aug;28(5-6):421-433</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29860608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Evol. 2016 May 30;6(13):4332-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27386079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2007 Jan;68(1):33-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17095025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2018 Apr;28(3):269-283</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29455336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol Resour. 2012 Mar;12(2):219-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22059700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2016 Oct;41:83-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27269505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2018 Aug;28(5-6):435-450</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29931404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Sep 18;284(38):25687-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19638342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2005 Mar;272(5):1160-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15720390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D136-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22139910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 May 16;300(5622):1138-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12750519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2014 Nov;24(8):603-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24756631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2010 Sep;3(5):783-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20713980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2017 Jan;27(1):35-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27549438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jul;156(3):1050-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21467213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2016 Nov;21(11):937-950</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27514454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Nov;124(3):1027-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11080280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2008 Oct;6(10):763-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18794914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2016 Oct;10(10):2341-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27093046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2018 Jan;28(1):71-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28986642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycobiology. 2011 Jun;39(2):79-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22783081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2015 Nov 1;31(21):3476-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26139637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2011 Jul 19;21(1):145-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21763615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 May 8;324(5928):753-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19423817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2017 Jul;27(5):477-486</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28210812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Oct;204(2):289-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25453133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Nov 22;414(6862):462-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11719809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2009 Mar;67(3):389-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19159421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Feb 13;6:65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25763002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1990 Oct 5;215(3):403-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2231712</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000166 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000166 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:32062707
   |texte=   Dead Rhizophagus irregularis biomass mysteriously stimulates plant growth.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:32062707" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020