Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Impact of Irrigation Strategies on Tomato Root Distribution and Rhizosphere Processes in an Organic System.

Identifieur interne : 000119 ( Main/Corpus ); précédent : 000118; suivant : 000120

Impact of Irrigation Strategies on Tomato Root Distribution and Rhizosphere Processes in an Organic System.

Auteurs : Meng Li ; Jennifer E. Schmidt ; Deirdre G. Lahue ; Patricia Lazicki ; Angela Kent ; Megan B. Machmuller ; Kate M. Scow ; Amélie C M. Gaudin

Source :

RBID : pubmed:32292412

Abstract

Root exploitation of soil heterogeneity and microbially mediated rhizosphere nutrient transformations play critical roles in plant resource uptake. However, how these processes change under water-saving irrigation technologies remains unclear, especially for organic systems where crops rely on soil ecological processes for plant nutrition and productivity. We conducted a field experiment and examined how water-saving subsurface drip irrigation (SDI) and concentrated organic fertilizer application altered root traits and rhizosphere processes compared to traditional furrow irrigation (FI) in an organic tomato system. We measured root distribution and morphology, the activities of C-, N-, and P-cycling enzymes in the rhizosphere, the abundance of rhizosphere microbial N-cycling genes, and root mycorrhizal colonization rate under two irrigation strategies. Tomato plants produced shorter and finer root systems with higher densities of roots around the drip line, lower activities of soil C-degrading enzymes, and shifts in the abundance of microbial N-cycling genes and mycorrhizal colonization rates in the rhizosphere of SDI plants compared to FI. SDI led to 66.4% higher irrigation water productivity than FI, but it also led to excessive vegetative growth and 28.3% lower tomato yield than FI. Our results suggest that roots and root-microbe interactions have a high potential for coordinated adaptation to water and nutrient spatial patterns to facilitate resource uptake under SDI. However, mismatches between plant needs and resource availability remain, highlighting the importance of assessing temporal dynamics of root-soil-microbe interactions to maximize their resource-mining potential for innovative irrigation systems.

DOI: 10.3389/fpls.2020.00360
PubMed: 32292412
PubMed Central: PMC7118217

Links to Exploration step

pubmed:32292412

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Impact of Irrigation Strategies on Tomato Root Distribution and Rhizosphere Processes in an Organic System.</title>
<author>
<name sortKey="Li, Meng" sort="Li, Meng" uniqKey="Li M" first="Meng" last="Li">Meng Li</name>
<affiliation>
<nlm:affiliation>Department of Plant Sciences, University of California, Davis, Davis, CA, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schmidt, Jennifer E" sort="Schmidt, Jennifer E" uniqKey="Schmidt J" first="Jennifer E" last="Schmidt">Jennifer E. Schmidt</name>
<affiliation>
<nlm:affiliation>Department of Plant Sciences, University of California, Davis, Davis, CA, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lahue, Deirdre G" sort="Lahue, Deirdre G" uniqKey="Lahue D" first="Deirdre G" last="Lahue">Deirdre G. Lahue</name>
<affiliation>
<nlm:affiliation>Department of Crop and Soil Sciences, Washington State University, Mount Vernon, WA, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lazicki, Patricia" sort="Lazicki, Patricia" uniqKey="Lazicki P" first="Patricia" last="Lazicki">Patricia Lazicki</name>
<affiliation>
<nlm:affiliation>Department of Land, Air, and Water Resources, University of California, Davis, Davis, CA, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kent, Angela" sort="Kent, Angela" uniqKey="Kent A" first="Angela" last="Kent">Angela Kent</name>
<affiliation>
<nlm:affiliation>Department of Natural Resources and Environmental Science, University of Illinois at Urbana-Champaign, Urbana, IL, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Machmuller, Megan B" sort="Machmuller, Megan B" uniqKey="Machmuller M" first="Megan B" last="Machmuller">Megan B. Machmuller</name>
<affiliation>
<nlm:affiliation>Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO, United States.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Soil and Crop Science, Colorado State University, Fort Collins, CO, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Scow, Kate M" sort="Scow, Kate M" uniqKey="Scow K" first="Kate M" last="Scow">Kate M. Scow</name>
<affiliation>
<nlm:affiliation>Department of Land, Air, and Water Resources, University of California, Davis, Davis, CA, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gaudin, Amelie C M" sort="Gaudin, Amelie C M" uniqKey="Gaudin A" first="Amélie C M" last="Gaudin">Amélie C M. Gaudin</name>
<affiliation>
<nlm:affiliation>Department of Plant Sciences, University of California, Davis, Davis, CA, United States.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32292412</idno>
<idno type="pmid">32292412</idno>
<idno type="doi">10.3389/fpls.2020.00360</idno>
<idno type="pmc">PMC7118217</idno>
<idno type="wicri:Area/Main/Corpus">000119</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000119</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Impact of Irrigation Strategies on Tomato Root Distribution and Rhizosphere Processes in an Organic System.</title>
<author>
<name sortKey="Li, Meng" sort="Li, Meng" uniqKey="Li M" first="Meng" last="Li">Meng Li</name>
<affiliation>
<nlm:affiliation>Department of Plant Sciences, University of California, Davis, Davis, CA, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schmidt, Jennifer E" sort="Schmidt, Jennifer E" uniqKey="Schmidt J" first="Jennifer E" last="Schmidt">Jennifer E. Schmidt</name>
<affiliation>
<nlm:affiliation>Department of Plant Sciences, University of California, Davis, Davis, CA, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lahue, Deirdre G" sort="Lahue, Deirdre G" uniqKey="Lahue D" first="Deirdre G" last="Lahue">Deirdre G. Lahue</name>
<affiliation>
<nlm:affiliation>Department of Crop and Soil Sciences, Washington State University, Mount Vernon, WA, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lazicki, Patricia" sort="Lazicki, Patricia" uniqKey="Lazicki P" first="Patricia" last="Lazicki">Patricia Lazicki</name>
<affiliation>
<nlm:affiliation>Department of Land, Air, and Water Resources, University of California, Davis, Davis, CA, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kent, Angela" sort="Kent, Angela" uniqKey="Kent A" first="Angela" last="Kent">Angela Kent</name>
<affiliation>
<nlm:affiliation>Department of Natural Resources and Environmental Science, University of Illinois at Urbana-Champaign, Urbana, IL, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Machmuller, Megan B" sort="Machmuller, Megan B" uniqKey="Machmuller M" first="Megan B" last="Machmuller">Megan B. Machmuller</name>
<affiliation>
<nlm:affiliation>Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO, United States.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Soil and Crop Science, Colorado State University, Fort Collins, CO, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Scow, Kate M" sort="Scow, Kate M" uniqKey="Scow K" first="Kate M" last="Scow">Kate M. Scow</name>
<affiliation>
<nlm:affiliation>Department of Land, Air, and Water Resources, University of California, Davis, Davis, CA, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gaudin, Amelie C M" sort="Gaudin, Amelie C M" uniqKey="Gaudin A" first="Amélie C M" last="Gaudin">Amélie C M. Gaudin</name>
<affiliation>
<nlm:affiliation>Department of Plant Sciences, University of California, Davis, Davis, CA, United States.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Root exploitation of soil heterogeneity and microbially mediated rhizosphere nutrient transformations play critical roles in plant resource uptake. However, how these processes change under water-saving irrigation technologies remains unclear, especially for organic systems where crops rely on soil ecological processes for plant nutrition and productivity. We conducted a field experiment and examined how water-saving subsurface drip irrigation (SDI) and concentrated organic fertilizer application altered root traits and rhizosphere processes compared to traditional furrow irrigation (FI) in an organic tomato system. We measured root distribution and morphology, the activities of C-, N-, and P-cycling enzymes in the rhizosphere, the abundance of rhizosphere microbial N-cycling genes, and root mycorrhizal colonization rate under two irrigation strategies. Tomato plants produced shorter and finer root systems with higher densities of roots around the drip line, lower activities of soil C-degrading enzymes, and shifts in the abundance of microbial N-cycling genes and mycorrhizal colonization rates in the rhizosphere of SDI plants compared to FI. SDI led to 66.4% higher irrigation water productivity than FI, but it also led to excessive vegetative growth and 28.3% lower tomato yield than FI. Our results suggest that roots and root-microbe interactions have a high potential for coordinated adaptation to water and nutrient spatial patterns to facilitate resource uptake under SDI. However, mismatches between plant needs and resource availability remain, highlighting the importance of assessing temporal dynamics of root-soil-microbe interactions to maximize their resource-mining potential for innovative irrigation systems.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32292412</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>11</Volume>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Impact of Irrigation Strategies on Tomato Root Distribution and Rhizosphere Processes in an Organic System.</ArticleTitle>
<Pagination>
<MedlinePgn>360</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2020.00360</ELocationID>
<Abstract>
<AbstractText>Root exploitation of soil heterogeneity and microbially mediated rhizosphere nutrient transformations play critical roles in plant resource uptake. However, how these processes change under water-saving irrigation technologies remains unclear, especially for organic systems where crops rely on soil ecological processes for plant nutrition and productivity. We conducted a field experiment and examined how water-saving subsurface drip irrigation (SDI) and concentrated organic fertilizer application altered root traits and rhizosphere processes compared to traditional furrow irrigation (FI) in an organic tomato system. We measured root distribution and morphology, the activities of C-, N-, and P-cycling enzymes in the rhizosphere, the abundance of rhizosphere microbial N-cycling genes, and root mycorrhizal colonization rate under two irrigation strategies. Tomato plants produced shorter and finer root systems with higher densities of roots around the drip line, lower activities of soil C-degrading enzymes, and shifts in the abundance of microbial N-cycling genes and mycorrhizal colonization rates in the rhizosphere of SDI plants compared to FI. SDI led to 66.4% higher irrigation water productivity than FI, but it also led to excessive vegetative growth and 28.3% lower tomato yield than FI. Our results suggest that roots and root-microbe interactions have a high potential for coordinated adaptation to water and nutrient spatial patterns to facilitate resource uptake under SDI. However, mismatches between plant needs and resource availability remain, highlighting the importance of assessing temporal dynamics of root-soil-microbe interactions to maximize their resource-mining potential for innovative irrigation systems.</AbstractText>
<CopyrightInformation>Copyright © 2020 Li, Schmidt, LaHue, Lazicki, Kent, Machmuller, Scow and Gaudin.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Meng</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Sciences, University of California, Davis, Davis, CA, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schmidt</LastName>
<ForeName>Jennifer E</ForeName>
<Initials>JE</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Sciences, University of California, Davis, Davis, CA, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>LaHue</LastName>
<ForeName>Deirdre G</ForeName>
<Initials>DG</Initials>
<AffiliationInfo>
<Affiliation>Department of Crop and Soil Sciences, Washington State University, Mount Vernon, WA, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lazicki</LastName>
<ForeName>Patricia</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Department of Land, Air, and Water Resources, University of California, Davis, Davis, CA, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kent</LastName>
<ForeName>Angela</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Natural Resources and Environmental Science, University of Illinois at Urbana-Champaign, Urbana, IL, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Machmuller</LastName>
<ForeName>Megan B</ForeName>
<Initials>MB</Initials>
<AffiliationInfo>
<Affiliation>Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO, United States.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Soil and Crop Science, Colorado State University, Fort Collins, CO, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Scow</LastName>
<ForeName>Kate M</ForeName>
<Initials>KM</Initials>
<AffiliationInfo>
<Affiliation>Department of Land, Air, and Water Resources, University of California, Davis, Davis, CA, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gaudin</LastName>
<ForeName>Amélie C M</ForeName>
<Initials>ACM</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Sciences, University of California, Davis, Davis, CA, United States.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>03</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">N-cycling functional genes</Keyword>
<Keyword MajorTopicYN="N">mycorrhizae</Keyword>
<Keyword MajorTopicYN="N">organic system</Keyword>
<Keyword MajorTopicYN="N">rhizosphere</Keyword>
<Keyword MajorTopicYN="N">root distribution</Keyword>
<Keyword MajorTopicYN="N">soil enzyme activity</Keyword>
<Keyword MajorTopicYN="N">subsurface drip irrigation</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>09</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>03</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>4</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>4</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>4</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32292412</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2020.00360</ArticleId>
<ArticleId IdType="pmc">PMC7118217</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Microbiol. 2013 Nov;11(11):789-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24056930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2010 Jun;4(6):799-808</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20182521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Nov;168(2):305-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16219070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2016 May 25;7:720</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27303367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1995 Jan;61(1):218-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16534906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2019 Apr;21(4):1196-1210</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30724437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(9):2454-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19498011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2016 Oct 1;566-567:1223-1234</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27266519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2008;59:341-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18444903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2017 Oct;22(10):823-829</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28803694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2018 Feb;99(2):503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29338085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2014 Dec;29(12):692-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25459399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2004 Feb;70(2):1008-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14766583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2019 Aug 22;9(1):12283</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31439927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2012 Jun 28;9(7):676-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22743772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2017 Nov 20;12(11):e0188361</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29155875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Assoc Off Anal Chem. 1989 Sep-Oct;72(5):770-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2808239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2015 Aug;9(8):1693-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25535936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2009 Jun;32(6):628-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18811732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Methods. 2017 Mar 7;13:11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28286541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2017 May;22(5):433-443</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28262426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2017 Aug;22(8):661-673</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28601419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Vis Exp. 2013 Nov 15;(81):e50961</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24299913</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000119 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000119 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:32292412
   |texte=   Impact of Irrigation Strategies on Tomato Root Distribution and Rhizosphere Processes in an Organic System.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:32292412" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020