Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Neighboring plants divergently modulate effects of loss-of-function in maize mycorrhizal phosphate uptake on host physiology and root fungal microbiota.

Identifieur interne : 000075 ( Main/Corpus ); précédent : 000074; suivant : 000076

Neighboring plants divergently modulate effects of loss-of-function in maize mycorrhizal phosphate uptake on host physiology and root fungal microbiota.

Auteurs : Izabela Fabia Ska ; Lina Pesch ; Eva Koebke ; Nina Gerlach ; Marcel Bucher

Source :

RBID : pubmed:32555651

English descriptors

Abstract

Maize, a main crop worldwide, establishes a mutualistic symbiosis with arbuscular mycorrhizal (AM) fungi providing nutrients to the roots from soil volumes which are normally not in reach of the non-colonized root. The mycorrhizal phosphate uptake pathway (MPU) spans from extraradical hyphae to root cortex cells housing fungal arbuscules and promotes the supply of phosphate to the mycorrhizal host in exchange for photosynthetic carbon. This symbiotic association with the mycobiont has been shown to affect plant host nutritional status and growth performance. However, whether and how the MPU affects the root microbial community associated with mycorrhizal hosts in association with neighboring plants, remains to be demonstrated. Here the maize germinal Mu transposon insertion mutant pht1;6, defective in mycorrhiza-specific Pi transporter PHT1;6 gene, and wild type B73 (wt) plants were grown in mono- and mixed culture and examined under greenhouse and field conditions. Disruption of the MPU in pht1;6 resulted in strongly diminished growth performance, in reduced P allocation to photosynthetic source leaves, and in imbalances in leaf elemental composition beyond P. At the microbial community level a loss of MPU activity had a minor effect on the root-associated fungal microbiome which was almost fully restricted to AM fungi of the Glomeromycotina. Moreover, while wt grew better in presence of pht1;6, pht1;6 accumulated little biomass irrespective of whether it was grown in mono- or mixed culture and despite of an enhanced fungal colonization of its roots in co-culture with wt. This suggested that a functional MPU is prerequisite to maintain maize growth and that neighboring plants competed for AM fungal Pi in low P soil. Thus future strategies towards improving yield in maize populations on soils with low inputs of P fertilizer could be realized by enhancing MPU at the individual plant level while leaving the root-associated fungal community largely unaffected.

DOI: 10.1371/journal.pone.0232633
PubMed: 32555651
PubMed Central: PMC7299352

Links to Exploration step

pubmed:32555651

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Neighboring plants divergently modulate effects of loss-of-function in maize mycorrhizal phosphate uptake on host physiology and root fungal microbiota.</title>
<author>
<name sortKey="Fabia Ska, Izabela" sort="Fabia Ska, Izabela" uniqKey="Fabia Ska I" first="Izabela" last="Fabia Ska">Izabela Fabia Ska</name>
<affiliation>
<nlm:affiliation>Institute for Plant Sciences, Cologne Biocenter, University of Cologne, Cologne, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pesch, Lina" sort="Pesch, Lina" uniqKey="Pesch L" first="Lina" last="Pesch">Lina Pesch</name>
<affiliation>
<nlm:affiliation>Institute for Plant Sciences, Cologne Biocenter, University of Cologne, Cologne, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Koebke, Eva" sort="Koebke, Eva" uniqKey="Koebke E" first="Eva" last="Koebke">Eva Koebke</name>
<affiliation>
<nlm:affiliation>Institute for Plant Sciences, Cologne Biocenter, University of Cologne, Cologne, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gerlach, Nina" sort="Gerlach, Nina" uniqKey="Gerlach N" first="Nina" last="Gerlach">Nina Gerlach</name>
<affiliation>
<nlm:affiliation>Institute for Plant Sciences, Cologne Biocenter, University of Cologne, Cologne, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bucher, Marcel" sort="Bucher, Marcel" uniqKey="Bucher M" first="Marcel" last="Bucher">Marcel Bucher</name>
<affiliation>
<nlm:affiliation>Institute for Plant Sciences, Cologne Biocenter, University of Cologne, Cologne, Germany.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32555651</idno>
<idno type="pmid">32555651</idno>
<idno type="doi">10.1371/journal.pone.0232633</idno>
<idno type="pmc">PMC7299352</idno>
<idno type="wicri:Area/Main/Corpus">000075</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000075</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Neighboring plants divergently modulate effects of loss-of-function in maize mycorrhizal phosphate uptake on host physiology and root fungal microbiota.</title>
<author>
<name sortKey="Fabia Ska, Izabela" sort="Fabia Ska, Izabela" uniqKey="Fabia Ska I" first="Izabela" last="Fabia Ska">Izabela Fabia Ska</name>
<affiliation>
<nlm:affiliation>Institute for Plant Sciences, Cologne Biocenter, University of Cologne, Cologne, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pesch, Lina" sort="Pesch, Lina" uniqKey="Pesch L" first="Lina" last="Pesch">Lina Pesch</name>
<affiliation>
<nlm:affiliation>Institute for Plant Sciences, Cologne Biocenter, University of Cologne, Cologne, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Koebke, Eva" sort="Koebke, Eva" uniqKey="Koebke E" first="Eva" last="Koebke">Eva Koebke</name>
<affiliation>
<nlm:affiliation>Institute for Plant Sciences, Cologne Biocenter, University of Cologne, Cologne, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gerlach, Nina" sort="Gerlach, Nina" uniqKey="Gerlach N" first="Nina" last="Gerlach">Nina Gerlach</name>
<affiliation>
<nlm:affiliation>Institute for Plant Sciences, Cologne Biocenter, University of Cologne, Cologne, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bucher, Marcel" sort="Bucher, Marcel" uniqKey="Bucher M" first="Marcel" last="Bucher">Marcel Bucher</name>
<affiliation>
<nlm:affiliation>Institute for Plant Sciences, Cologne Biocenter, University of Cologne, Cologne, Germany.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biomass (MeSH)</term>
<term>Loss of Function Mutation (MeSH)</term>
<term>Mycorrhizae (metabolism)</term>
<term>Phosphates (metabolism)</term>
<term>Plant Leaves (growth & development)</term>
<term>Plant Leaves (physiology)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Soil (chemistry)</term>
<term>Symbiosis (physiology)</term>
<term>Zea mays (genetics)</term>
<term>Zea mays (growth & development)</term>
<term>Zea mays (microbiology)</term>
<term>Zea mays (physiology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Soil</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Phosphates</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Plant Leaves</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Plant Leaves</term>
<term>Symbiosis</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biomass</term>
<term>Loss of Function Mutation</term>
<term>Plants, Genetically Modified</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Maize, a main crop worldwide, establishes a mutualistic symbiosis with arbuscular mycorrhizal (AM) fungi providing nutrients to the roots from soil volumes which are normally not in reach of the non-colonized root. The mycorrhizal phosphate uptake pathway (MPU) spans from extraradical hyphae to root cortex cells housing fungal arbuscules and promotes the supply of phosphate to the mycorrhizal host in exchange for photosynthetic carbon. This symbiotic association with the mycobiont has been shown to affect plant host nutritional status and growth performance. However, whether and how the MPU affects the root microbial community associated with mycorrhizal hosts in association with neighboring plants, remains to be demonstrated. Here the maize germinal Mu transposon insertion mutant pht1;6, defective in mycorrhiza-specific Pi transporter PHT1;6 gene, and wild type B73 (wt) plants were grown in mono- and mixed culture and examined under greenhouse and field conditions. Disruption of the MPU in pht1;6 resulted in strongly diminished growth performance, in reduced P allocation to photosynthetic source leaves, and in imbalances in leaf elemental composition beyond P. At the microbial community level a loss of MPU activity had a minor effect on the root-associated fungal microbiome which was almost fully restricted to AM fungi of the Glomeromycotina. Moreover, while wt grew better in presence of pht1;6, pht1;6 accumulated little biomass irrespective of whether it was grown in mono- or mixed culture and despite of an enhanced fungal colonization of its roots in co-culture with wt. This suggested that a functional MPU is prerequisite to maintain maize growth and that neighboring plants competed for AM fungal Pi in low P soil. Thus future strategies towards improving yield in maize populations on soils with low inputs of P fertilizer could be realized by enhancing MPU at the individual plant level while leaving the root-associated fungal community largely unaffected.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32555651</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>08</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>08</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>15</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Neighboring plants divergently modulate effects of loss-of-function in maize mycorrhizal phosphate uptake on host physiology and root fungal microbiota.</ArticleTitle>
<Pagination>
<MedlinePgn>e0232633</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0232633</ELocationID>
<Abstract>
<AbstractText>Maize, a main crop worldwide, establishes a mutualistic symbiosis with arbuscular mycorrhizal (AM) fungi providing nutrients to the roots from soil volumes which are normally not in reach of the non-colonized root. The mycorrhizal phosphate uptake pathway (MPU) spans from extraradical hyphae to root cortex cells housing fungal arbuscules and promotes the supply of phosphate to the mycorrhizal host in exchange for photosynthetic carbon. This symbiotic association with the mycobiont has been shown to affect plant host nutritional status and growth performance. However, whether and how the MPU affects the root microbial community associated with mycorrhizal hosts in association with neighboring plants, remains to be demonstrated. Here the maize germinal Mu transposon insertion mutant pht1;6, defective in mycorrhiza-specific Pi transporter PHT1;6 gene, and wild type B73 (wt) plants were grown in mono- and mixed culture and examined under greenhouse and field conditions. Disruption of the MPU in pht1;6 resulted in strongly diminished growth performance, in reduced P allocation to photosynthetic source leaves, and in imbalances in leaf elemental composition beyond P. At the microbial community level a loss of MPU activity had a minor effect on the root-associated fungal microbiome which was almost fully restricted to AM fungi of the Glomeromycotina. Moreover, while wt grew better in presence of pht1;6, pht1;6 accumulated little biomass irrespective of whether it was grown in mono- or mixed culture and despite of an enhanced fungal colonization of its roots in co-culture with wt. This suggested that a functional MPU is prerequisite to maintain maize growth and that neighboring plants competed for AM fungal Pi in low P soil. Thus future strategies towards improving yield in maize populations on soils with low inputs of P fertilizer could be realized by enhancing MPU at the individual plant level while leaving the root-associated fungal community largely unaffected.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Fabiańska</LastName>
<ForeName>Izabela</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Institute for Plant Sciences, Cologne Biocenter, University of Cologne, Cologne, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pesch</LastName>
<ForeName>Lina</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Institute for Plant Sciences, Cologne Biocenter, University of Cologne, Cologne, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Koebke</LastName>
<ForeName>Eva</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Institute for Plant Sciences, Cologne Biocenter, University of Cologne, Cologne, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gerlach</LastName>
<ForeName>Nina</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Institute for Plant Sciences, Cologne Biocenter, University of Cologne, Cologne, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bucher</LastName>
<ForeName>Marcel</ForeName>
<Initials>M</Initials>
<Identifier Source="ORCID">0000-0003-1680-9413</Identifier>
<AffiliationInfo>
<Affiliation>Institute for Plant Sciences, Cologne Biocenter, University of Cologne, Cologne, Germany.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>06</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010710">Phosphates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="N">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000073658" MajorTopicYN="N">Loss of Function Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010710" MajorTopicYN="N">Phosphates</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003313" MajorTopicYN="N">Zea mays</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<CoiStatement>The authors have declared that no competing interests exist.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>02</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>04</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>6</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>6</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>8</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32555651</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0232633</ArticleId>
<ArticleId IdType="pii">PONE-D-20-03394</ArticleId>
<ArticleId IdType="pmc">PMC7299352</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>ISME J. 2015 Nov;9(11):2349-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25909975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;173(1):11-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17176390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Jul;39(1):13-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15200639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Med (Zagreb). 2013;23(2):141-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23894859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2018 Jul 16;9(1):2738</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30013066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2018 Feb;217(3):1240-1253</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29154441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2019 Jun;49:90-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31733616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Apr 20;101(16):6285-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15075387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2003 Oct;16(10):903-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14558692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2017 Jun 16;356(6343):1172-1175</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28596307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2018 Sep 25;115(39):E9239-E9246</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30209216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2010 Mar;51(3):341-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20097910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2009 Jul;19(7):1141-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19383763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Sep;133(1):16-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12970469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Feb 1;116(2):447-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9490752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2017 Jun 16;356(6343):1175-1178</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28596311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Nov;160(3):1384-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22972706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol Rep. 2015 Aug;7(4):592-605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25865809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2015 Nov;38(11):2398-416</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25923645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2018 May;4(5):247-257</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29725101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Mar;205(4):1485-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25297948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2013 Apr;74(2):280-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23452278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mBio. 2019 Oct 8;10(5):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31594815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2019 Jan 8;47(D1):D259-D264</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30371820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2016 Jul 12;7:12151</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27402057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Oct 8;461(7265):716-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19812648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2018 Feb 06;115(6):E1157-E1165</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29358405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Jan 30;104(5):1720-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17242358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2014 Jun 04;5:148</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24926286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):13324-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12271140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2009 Jun 06;10:171</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19500385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2016 Jun 13;17(6):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27304955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2018 Apr 1;59(4):673-690</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29425360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiome. 2019 Jan 11;7(1):5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30635058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2015 Aug;38(8):1591-612</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25630535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiome. 2018 Mar 27;6(1):58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29587885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Jun 19;324(5934):1519-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19541981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2017 Sep 11;27(17):R952-R963</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28898668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Oct;14(10):2413-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12368495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Dec;68(6):954-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21848683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2019 Mar;221(4):2123-2137</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30317641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Apr;214(2):632-643</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28098948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Aug 12;333(6044):880-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21836016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2016 Sep;108(5):1028-1046</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27738200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Oct 31;114(44):E9403-E9412</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28973917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Aug;156(4):2141-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21705655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Mar;181(4):950-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19140941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Oct 27;112(43):13390-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26438870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2006 Mar;8(2):186-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16547863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2016 Apr 7;165(2):464-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26997485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Nov 22;414(6862):462-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11719809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Jun;159(2):789-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22517410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2013 Nov;22(21):5271-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24112409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Sep 17;6:667</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26441999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Dec 26;4:533</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24409191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2019 Oct;224(1):409-420</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31125425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2018 Jul 10;115(28):7368-7373</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29941552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 May 11;7(1):1771</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28496167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Apr 16;110(16):6548-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23576752</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000075 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000075 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:32555651
   |texte=   Neighboring plants divergently modulate effects of loss-of-function in maize mycorrhizal phosphate uptake on host physiology and root fungal microbiota.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:32555651" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020