Serveur d'exploration sur les mitochondries dans l'oxydoréduction chez les plantes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Climate Change and the Impact of Greenhouse Gasses: CO2 and NO, Friends and Foes of Plant Oxidative Stress.

Identifieur interne : 000232 ( Main/Exploration ); précédent : 000231; suivant : 000233

Climate Change and the Impact of Greenhouse Gasses: CO2 and NO, Friends and Foes of Plant Oxidative Stress.

Auteurs : Raúl Cassia [Argentine] ; Macarena Nocioni [Argentine] ; Natalia Correa-Aragunde [Argentine] ; Lorenzo Lamattina [Argentine]

Source :

RBID : pubmed:29545820

Abstract

Here, we review information on how plants face redox imbalance caused by climate change, and focus on the role of nitric oxide (NO) in this response. Life on Earth is possible thanks to greenhouse effect. Without it, temperature on Earth's surface would be around -19°C, instead of the current average of 14°C. Greenhouse effect is produced by greenhouse gasses (GHG) like water vapor, carbon dioxide (CO2), methane (CH4), nitrous oxides (NxO) and ozone (O3). GHG have natural and anthropogenic origin. However, increasing GHG provokes extreme climate changes such as floods, droughts and heat, which induce reactive oxygen species (ROS) and oxidative stress in plants. The main sources of ROS in stress conditions are: augmented photorespiration, NADPH oxidase (NOX) activity, β-oxidation of fatty acids and disorders in the electron transport chains of mitochondria and chloroplasts. Plants have developed an antioxidant machinery that includes the activity of ROS detoxifying enzymes [e.g., superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), glutathione peroxidase (GPX), and peroxiredoxin (PRX)], as well as antioxidant molecules such as ascorbic acid (ASC) and glutathione (GSH) that are present in almost all subcellular compartments. CO2 and NO help to maintain the redox equilibrium. Higher CO2 concentrations increase the photosynthesis through the CO2-unsaturated Rubisco activity. But Rubisco photorespiration and NOX activities could also augment ROS production. NO regulate the ROS concentration preserving balance among ROS, GSH, GSNO, and ASC. When ROS are in huge concentration, NO induces transcription and activity of SOD, APX, and CAT. However, when ROS are necessary (e.g., for pathogen resistance), NO may inhibit APX, CAT, and NOX activity by the S-nitrosylation of cysteine residues, favoring cell death. NO also regulates GSH concentration in several ways. NO may react with GSH to form GSNO, the NO cell reservoir and main source of S-nitrosylation. GSNO could be decomposed by the GSNO reductase (GSNOR) to GSSG which, in turn, is reduced to GSH by glutathione reductase (GR). GSNOR may be also inhibited by S-nitrosylation and GR activated by NO. In conclusion, NO plays a central role in the tolerance of plants to climate change.

DOI: 10.3389/fpls.2018.00273
PubMed: 29545820
PubMed Central: PMC5837998


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Climate Change and the Impact of Greenhouse Gasses: CO
<sub>2</sub>
and NO, Friends and Foes of Plant Oxidative Stress.</title>
<author>
<name sortKey="Cassia, Raul" sort="Cassia, Raul" uniqKey="Cassia R" first="Raúl" last="Cassia">Raúl Cassia</name>
<affiliation wicri:level="1">
<nlm:affiliation>Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata-Consejo Nacional de Investigaciones Científicas y Técnicas, Mar del Plata, Argentina.</nlm:affiliation>
<country xml:lang="fr">Argentine</country>
<wicri:regionArea>Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata-Consejo Nacional de Investigaciones Científicas y Técnicas, Mar del Plata</wicri:regionArea>
<wicri:noRegion>Mar del Plata</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nocioni, Macarena" sort="Nocioni, Macarena" uniqKey="Nocioni M" first="Macarena" last="Nocioni">Macarena Nocioni</name>
<affiliation wicri:level="1">
<nlm:affiliation>Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata-Consejo Nacional de Investigaciones Científicas y Técnicas, Mar del Plata, Argentina.</nlm:affiliation>
<country xml:lang="fr">Argentine</country>
<wicri:regionArea>Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata-Consejo Nacional de Investigaciones Científicas y Técnicas, Mar del Plata</wicri:regionArea>
<wicri:noRegion>Mar del Plata</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Correa Aragunde, Natalia" sort="Correa Aragunde, Natalia" uniqKey="Correa Aragunde N" first="Natalia" last="Correa-Aragunde">Natalia Correa-Aragunde</name>
<affiliation wicri:level="1">
<nlm:affiliation>Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata-Consejo Nacional de Investigaciones Científicas y Técnicas, Mar del Plata, Argentina.</nlm:affiliation>
<country xml:lang="fr">Argentine</country>
<wicri:regionArea>Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata-Consejo Nacional de Investigaciones Científicas y Técnicas, Mar del Plata</wicri:regionArea>
<wicri:noRegion>Mar del Plata</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lamattina, Lorenzo" sort="Lamattina, Lorenzo" uniqKey="Lamattina L" first="Lorenzo" last="Lamattina">Lorenzo Lamattina</name>
<affiliation wicri:level="1">
<nlm:affiliation>Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata-Consejo Nacional de Investigaciones Científicas y Técnicas, Mar del Plata, Argentina.</nlm:affiliation>
<country xml:lang="fr">Argentine</country>
<wicri:regionArea>Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata-Consejo Nacional de Investigaciones Científicas y Técnicas, Mar del Plata</wicri:regionArea>
<wicri:noRegion>Mar del Plata</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29545820</idno>
<idno type="pmid">29545820</idno>
<idno type="doi">10.3389/fpls.2018.00273</idno>
<idno type="pmc">PMC5837998</idno>
<idno type="wicri:Area/Main/Corpus">000227</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000227</idno>
<idno type="wicri:Area/Main/Curation">000227</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000227</idno>
<idno type="wicri:Area/Main/Exploration">000227</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Climate Change and the Impact of Greenhouse Gasses: CO
<sub>2</sub>
and NO, Friends and Foes of Plant Oxidative Stress.</title>
<author>
<name sortKey="Cassia, Raul" sort="Cassia, Raul" uniqKey="Cassia R" first="Raúl" last="Cassia">Raúl Cassia</name>
<affiliation wicri:level="1">
<nlm:affiliation>Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata-Consejo Nacional de Investigaciones Científicas y Técnicas, Mar del Plata, Argentina.</nlm:affiliation>
<country xml:lang="fr">Argentine</country>
<wicri:regionArea>Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata-Consejo Nacional de Investigaciones Científicas y Técnicas, Mar del Plata</wicri:regionArea>
<wicri:noRegion>Mar del Plata</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nocioni, Macarena" sort="Nocioni, Macarena" uniqKey="Nocioni M" first="Macarena" last="Nocioni">Macarena Nocioni</name>
<affiliation wicri:level="1">
<nlm:affiliation>Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata-Consejo Nacional de Investigaciones Científicas y Técnicas, Mar del Plata, Argentina.</nlm:affiliation>
<country xml:lang="fr">Argentine</country>
<wicri:regionArea>Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata-Consejo Nacional de Investigaciones Científicas y Técnicas, Mar del Plata</wicri:regionArea>
<wicri:noRegion>Mar del Plata</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Correa Aragunde, Natalia" sort="Correa Aragunde, Natalia" uniqKey="Correa Aragunde N" first="Natalia" last="Correa-Aragunde">Natalia Correa-Aragunde</name>
<affiliation wicri:level="1">
<nlm:affiliation>Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata-Consejo Nacional de Investigaciones Científicas y Técnicas, Mar del Plata, Argentina.</nlm:affiliation>
<country xml:lang="fr">Argentine</country>
<wicri:regionArea>Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata-Consejo Nacional de Investigaciones Científicas y Técnicas, Mar del Plata</wicri:regionArea>
<wicri:noRegion>Mar del Plata</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lamattina, Lorenzo" sort="Lamattina, Lorenzo" uniqKey="Lamattina L" first="Lorenzo" last="Lamattina">Lorenzo Lamattina</name>
<affiliation wicri:level="1">
<nlm:affiliation>Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata-Consejo Nacional de Investigaciones Científicas y Técnicas, Mar del Plata, Argentina.</nlm:affiliation>
<country xml:lang="fr">Argentine</country>
<wicri:regionArea>Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata-Consejo Nacional de Investigaciones Científicas y Técnicas, Mar del Plata</wicri:regionArea>
<wicri:noRegion>Mar del Plata</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Here, we review information on how plants face redox imbalance caused by climate change, and focus on the role of nitric oxide (NO) in this response. Life on Earth is possible thanks to greenhouse effect. Without it, temperature on Earth's surface would be around -19°C, instead of the current average of 14°C. Greenhouse effect is produced by greenhouse gasses (GHG) like water vapor, carbon dioxide (CO
<sub>2</sub>
), methane (CH
<sub>4</sub>
), nitrous oxides (N
<sub>x</sub>
O) and ozone (O
<sub>3</sub>
). GHG have natural and anthropogenic origin. However, increasing GHG provokes extreme climate changes such as floods, droughts and heat, which induce reactive oxygen species (ROS) and oxidative stress in plants. The main sources of ROS in stress conditions are: augmented photorespiration, NADPH oxidase (NOX) activity, β-oxidation of fatty acids and disorders in the electron transport chains of mitochondria and chloroplasts. Plants have developed an antioxidant machinery that includes the activity of ROS detoxifying enzymes [e.g., superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), glutathione peroxidase (GPX), and peroxiredoxin (PRX)], as well as antioxidant molecules such as ascorbic acid (ASC) and glutathione (GSH) that are present in almost all subcellular compartments. CO
<sub>2</sub>
and NO help to maintain the redox equilibrium. Higher CO
<sub>2</sub>
concentrations increase the photosynthesis through the CO
<sub>2</sub>
-unsaturated Rubisco activity. But Rubisco photorespiration and NOX activities could also augment ROS production. NO regulate the ROS concentration preserving balance among ROS, GSH, GSNO, and ASC. When ROS are in huge concentration, NO induces transcription and activity of SOD, APX, and CAT. However, when ROS are necessary (e.g., for pathogen resistance), NO may inhibit APX, CAT, and NOX activity by the S-nitrosylation of cysteine residues, favoring cell death. NO also regulates GSH concentration in several ways. NO may react with GSH to form GSNO, the NO cell reservoir and main source of S-nitrosylation. GSNO could be decomposed by the GSNO reductase (GSNOR) to GSSG which, in turn, is reduced to GSH by glutathione reductase (GR). GSNOR may be also inhibited by S-nitrosylation and GR activated by NO. In conclusion, NO plays a central role in the tolerance of plants to climate change.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">29545820</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>9</Volume>
<PubDate>
<Year>2018</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Climate Change and the Impact of Greenhouse Gasses: CO
<sub>2</sub>
and NO, Friends and Foes of Plant Oxidative Stress.</ArticleTitle>
<Pagination>
<MedlinePgn>273</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2018.00273</ELocationID>
<Abstract>
<AbstractText>Here, we review information on how plants face redox imbalance caused by climate change, and focus on the role of nitric oxide (NO) in this response. Life on Earth is possible thanks to greenhouse effect. Without it, temperature on Earth's surface would be around -19°C, instead of the current average of 14°C. Greenhouse effect is produced by greenhouse gasses (GHG) like water vapor, carbon dioxide (CO
<sub>2</sub>
), methane (CH
<sub>4</sub>
), nitrous oxides (N
<sub>x</sub>
O) and ozone (O
<sub>3</sub>
). GHG have natural and anthropogenic origin. However, increasing GHG provokes extreme climate changes such as floods, droughts and heat, which induce reactive oxygen species (ROS) and oxidative stress in plants. The main sources of ROS in stress conditions are: augmented photorespiration, NADPH oxidase (NOX) activity, β-oxidation of fatty acids and disorders in the electron transport chains of mitochondria and chloroplasts. Plants have developed an antioxidant machinery that includes the activity of ROS detoxifying enzymes [e.g., superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), glutathione peroxidase (GPX), and peroxiredoxin (PRX)], as well as antioxidant molecules such as ascorbic acid (ASC) and glutathione (GSH) that are present in almost all subcellular compartments. CO
<sub>2</sub>
and NO help to maintain the redox equilibrium. Higher CO
<sub>2</sub>
concentrations increase the photosynthesis through the CO
<sub>2</sub>
-unsaturated Rubisco activity. But Rubisco photorespiration and NOX activities could also augment ROS production. NO regulate the ROS concentration preserving balance among ROS, GSH, GSNO, and ASC. When ROS are in huge concentration, NO induces transcription and activity of SOD, APX, and CAT. However, when ROS are necessary (e.g., for pathogen resistance), NO may inhibit APX, CAT, and NOX activity by the S-nitrosylation of cysteine residues, favoring cell death. NO also regulates GSH concentration in several ways. NO may react with GSH to form GSNO, the NO cell reservoir and main source of S-nitrosylation. GSNO could be decomposed by the GSNO reductase (GSNOR) to GSSG which, in turn, is reduced to GSH by glutathione reductase (GR). GSNOR may be also inhibited by S-nitrosylation and GR activated by NO. In conclusion, NO plays a central role in the tolerance of plants to climate change.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cassia</LastName>
<ForeName>Raúl</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata-Consejo Nacional de Investigaciones Científicas y Técnicas, Mar del Plata, Argentina.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nocioni</LastName>
<ForeName>Macarena</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata-Consejo Nacional de Investigaciones Científicas y Técnicas, Mar del Plata, Argentina.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Correa-Aragunde</LastName>
<ForeName>Natalia</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata-Consejo Nacional de Investigaciones Científicas y Técnicas, Mar del Plata, Argentina.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lamattina</LastName>
<ForeName>Lorenzo</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata-Consejo Nacional de Investigaciones Científicas y Técnicas, Mar del Plata, Argentina.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>03</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">climate change</Keyword>
<Keyword MajorTopicYN="N">greenhouse effect</Keyword>
<Keyword MajorTopicYN="N">nitric oxide</Keyword>
<Keyword MajorTopicYN="N">oxidative stress</Keyword>
<Keyword MajorTopicYN="N">plants</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>11</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>02</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>3</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>3</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>3</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29545820</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2018.00273</ArticleId>
<ArticleId IdType="pmc">PMC5837998</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Glob Chang Biol. 2014 Dec;20(12):3670-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24802996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2013 Aug;28(8):482-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23721732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nitric Oxide. 1999 Jun;3(3):199-208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10442851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2011 Dec 16;416(3-4):331-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22115780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2015 Feb;38(2):240-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24417414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1999 Dec 1;372(1):8-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10562411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2000;16:221-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11031236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2012 Jan;17(1):9-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22037416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2013 May 03;14(5):9643-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23644891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 May 13;7:657</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27242858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1989 Sep;86(18):6838-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16594069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2013 Mar;201-202:66-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23352403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 Dec;163(4):1766-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24158396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2010 Dec;15(12):684-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20970368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Air Qual Atmos Health. 2015 Jun;8(3):283-292</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27547271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nitric Oxide. 2005 Aug;13(1):1-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15908241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2008;59:143-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18444899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Mar;181(4):871-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19140950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Microbiol. 2007 Oct;55(4):294-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17700985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 May 21;110(21):8744-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23650383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Nov;22(11):3816-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21119059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Oct;208(2):342-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26308648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2008 Apr;8(7):1459-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18297659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteomics. 2013 Feb 21;79:87-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23238061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 Mar;63(5):2089-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22213812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2009 Feb;47(2):132-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19042137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Sep 22;437(7058):529-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16177786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2013 Mar 8;432(2):203-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23395681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2011 Oct;181(4):401-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21889045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2007 Aug;45(8):542-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17606379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1997 Jun;48:609-639</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2010;61:443-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20192746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2009 May;32(5):509-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19183289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2016 Feb;67(3):893-904</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26608644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2004;55:373-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15377225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2008 Mar;3(3):156-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19513210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Nov 4;310(5749):841-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16210499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(6):e20714</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21674063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Dec;19(12):4120-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18165327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 May;150(1):272-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19329565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2017 Apr;40(4):462-472</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26754426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2006 Oct;171(4):449-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25193642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Jul 20;5:12329</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26189990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Dec;133(4):1420-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14681524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Oct 13;478(7368):264-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21964330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2009 Aug;12(4):451-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19608448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2004;55:591-628</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15377233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Sep 16;100(19):11116-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12949257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2010;61:561-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20192751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2013 May 27;368(1621):20130126</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23713124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2015 Feb;66(3):989-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25428993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nitric Oxide. 2015 May 1;47:34-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25795592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann N Y Acad Sci. 2010 May;1195:84-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20536818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jan;155(1):2-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21205630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2015 Feb;231:1-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25575986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2014 Feb;65(2):527-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24288182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2002 Jan;53(366):103-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11741046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2014 Nov 11;5:5401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25384398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2014 Apr;37(4):886-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24112047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Photochem Photobiol B. 2014 Dec;141:202-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25463668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2008;59(3):501-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18079135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Apr;167(4):1604-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25667317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2016 Oct;39(10 ):2097-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26992087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Mar 24;7:369</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27047533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2016 Jun;31:36-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27043481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2017 Jun;90(5):856-867</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27801967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2008 Dec;31(12):1771-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18761700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2016 Nov 11;354(6313):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27846577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2012 Apr;17(4):221-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22381565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2015 Dec;242(6):1361-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26232921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 1999 Aug;4(8):299-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10431217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 May 08;4:126</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23658557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2003;54:109-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14502987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glob Chang Biol. 2017 Sep;23 (9):3781-3793</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28181733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2013 Aug;64(11):3339-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23918967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glob Chang Biol. 2013 Jan;19(1):45-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23504720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1995 Aug 15;232(1):188-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7556149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2017 May;40(5):741-747</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28042679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2016 Mar 01;9(417):re2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26933064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2015 May;66(10):2913-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25750426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2011 Nov;181(5):604-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21893257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2000 Dec;13(12):1380-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11106031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2005;83(2):181-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16143851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2015 Oct 19;25(20):2709-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26455301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Jun 30;312(5782):1918-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16809532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Sep 10;6:701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26442017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Dec 5;302(5651):1719-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14657489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Mar;201(4):1121-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24188383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Apr 12;7:471</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27148300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Apr 14;165(2):759-773</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24733882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Apr;206(1):57-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25580769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Jul 10;424(6945):183-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12853954</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Argentine</li>
</country>
</list>
<tree>
<country name="Argentine">
<noRegion>
<name sortKey="Cassia, Raul" sort="Cassia, Raul" uniqKey="Cassia R" first="Raúl" last="Cassia">Raúl Cassia</name>
</noRegion>
<name sortKey="Correa Aragunde, Natalia" sort="Correa Aragunde, Natalia" uniqKey="Correa Aragunde N" first="Natalia" last="Correa-Aragunde">Natalia Correa-Aragunde</name>
<name sortKey="Lamattina, Lorenzo" sort="Lamattina, Lorenzo" uniqKey="Lamattina L" first="Lorenzo" last="Lamattina">Lorenzo Lamattina</name>
<name sortKey="Nocioni, Macarena" sort="Nocioni, Macarena" uniqKey="Nocioni M" first="Macarena" last="Nocioni">Macarena Nocioni</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MitoPlantRedoxV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000232 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000232 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MitoPlantRedoxV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29545820
   |texte=   Climate Change and the Impact of Greenhouse Gasses: CO2 and NO, Friends and Foes of Plant Oxidative Stress.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29545820" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MitoPlantRedoxV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 12:18:52 2020. Site generation: Sat Nov 21 12:19:22 2020