Serveur d'exploration sur les protéines de liaison chez les plantes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Abiotic stress response in yeast and metal-binding ability of a type 2 metallothionein-like protein (PutMT2) from Puccinellia tenuiflora.

Identifieur interne : 000166 ( Main/Exploration ); précédent : 000165; suivant : 000167

Abiotic stress response in yeast and metal-binding ability of a type 2 metallothionein-like protein (PutMT2) from Puccinellia tenuiflora.

Auteurs : Min Zhang [République populaire de Chine] ; Tetsuo Takano ; Shenkui Liu ; Xinxin Zhang

Source :

RBID : pubmed:24973879

Descripteurs français

English descriptors

Abstract

Metallothioneins are low-molecular weight and cysteine-rich metal-binding proteins that play predominant cellular roles in the scavenging of reactive oxygen species and in mediating metal metabolism. To evaluate the role of a type-2 metallothionein-like gene from Puccinellia tenuiflora (PutMT2), the gene was over-expressed in yeast, and growth was assessed under a variety of abiotic stress conditions including peroxide (H2O2), salinity (NaCl and NaHCO3), and metal stress. PutMT2 overexpression in yeast improved the tolerance of cells to H2O2, NaCl, NaHCO3, Zn(2+), Fe(2+), Fe(3+), Cd(2+), Cr(6+), and Ag(+), but increased the sensitivity of cells to Mn(2+), Co(2+), Cu(2+), and Ni(2+) compared with control cells. PutMT2 was then expressed in Escherichia coli BL21as a glutathione S-transferase (GST) fusion protein (GST-PutMT2), and the metal-binding ability of GST-PutMT2 was analyzed and compared with GST alone using inductively coupled plasma atomic emission spectroscopy. Results showed that PutMT2 could bind to Cr, Cd, Co, Ag, Ba, Pb, Mn, Zn, Fe, Cu, P, Al, and Mg, but not Ni and As. There was no evidence to suggest that PutMT2 exhibited a specific or selective binding tendency to any individual metal ion. PutMT2 protein bound to Zn, Na, and Cu in vivo, perhaps with the highest affinity for Cu. Taken together, our results suggest that PutMT2 protein could play an important role in improving metal tolerance by metal binding in yeast. However, additional studies are required to confirm these results and to clarify the function of PutMT2 in transgenic plants.

DOI: 10.1007/s11033-014-3458-1
PubMed: 24973879


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Abiotic stress response in yeast and metal-binding ability of a type 2 metallothionein-like protein (PutMT2) from Puccinellia tenuiflora.</title>
<author>
<name sortKey="Zhang, Min" sort="Zhang, Min" uniqKey="Zhang M" first="Min" last="Zhang">Min Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Centre (ASNESC), Northeast Forestry University, Harbin, 150040, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Centre (ASNESC), Northeast Forestry University, Harbin, 150040</wicri:regionArea>
<wicri:noRegion>150040</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Takano, Tetsuo" sort="Takano, Tetsuo" uniqKey="Takano T" first="Tetsuo" last="Takano">Tetsuo Takano</name>
</author>
<author>
<name sortKey="Liu, Shenkui" sort="Liu, Shenkui" uniqKey="Liu S" first="Shenkui" last="Liu">Shenkui Liu</name>
</author>
<author>
<name sortKey="Zhang, Xinxin" sort="Zhang, Xinxin" uniqKey="Zhang X" first="Xinxin" last="Zhang">Xinxin Zhang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24973879</idno>
<idno type="pmid">24973879</idno>
<idno type="doi">10.1007/s11033-014-3458-1</idno>
<idno type="wicri:Area/Main/Corpus">000151</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000151</idno>
<idno type="wicri:Area/Main/Curation">000151</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000151</idno>
<idno type="wicri:Area/Main/Exploration">000151</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Abiotic stress response in yeast and metal-binding ability of a type 2 metallothionein-like protein (PutMT2) from Puccinellia tenuiflora.</title>
<author>
<name sortKey="Zhang, Min" sort="Zhang, Min" uniqKey="Zhang M" first="Min" last="Zhang">Min Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Centre (ASNESC), Northeast Forestry University, Harbin, 150040, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Centre (ASNESC), Northeast Forestry University, Harbin, 150040</wicri:regionArea>
<wicri:noRegion>150040</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Takano, Tetsuo" sort="Takano, Tetsuo" uniqKey="Takano T" first="Tetsuo" last="Takano">Tetsuo Takano</name>
</author>
<author>
<name sortKey="Liu, Shenkui" sort="Liu, Shenkui" uniqKey="Liu S" first="Shenkui" last="Liu">Shenkui Liu</name>
</author>
<author>
<name sortKey="Zhang, Xinxin" sort="Zhang, Xinxin" uniqKey="Zhang X" first="Xinxin" last="Zhang">Xinxin Zhang</name>
</author>
</analytic>
<series>
<title level="j">Molecular biology reports</title>
<idno type="eISSN">1573-4978</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Cloning, Molecular (MeSH)</term>
<term>DNA, Plant (genetics)</term>
<term>Escherichia coli (genetics)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Glutathione Transferase (genetics)</term>
<term>Glutathione Transferase (metabolism)</term>
<term>Hydrogen Peroxide (metabolism)</term>
<term>Metallothionein (genetics)</term>
<term>Metallothionein (metabolism)</term>
<term>Metals, Heavy (metabolism)</term>
<term>Molecular Weight (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Poaceae (genetics)</term>
<term>Reactive Oxygen Species (metabolism)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Salinity (MeSH)</term>
<term>Sequence Alignment (MeSH)</term>
<term>Sequence Analysis, DNA (MeSH)</term>
<term>Spectrophotometry, Atomic (MeSH)</term>
<term>Stress, Physiological (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN des plantes (génétique)</term>
<term>Alignement de séquences (MeSH)</term>
<term>Analyse de séquence d'ADN (MeSH)</term>
<term>Clonage moléculaire (MeSH)</term>
<term>Escherichia coli (génétique)</term>
<term>Espèces réactives de l'oxygène (métabolisme)</term>
<term>Glutathione transferase (génétique)</term>
<term>Glutathione transferase (métabolisme)</term>
<term>Masse moléculaire (MeSH)</term>
<term>Métallothionéine (génétique)</term>
<term>Métallothionéine (métabolisme)</term>
<term>Métaux lourds (métabolisme)</term>
<term>Peroxyde d'hydrogène (métabolisme)</term>
<term>Phylogenèse (MeSH)</term>
<term>Poaceae (génétique)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Salinité (MeSH)</term>
<term>Spectrophotométrie atomique (MeSH)</term>
<term>Stress physiologique (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Plant</term>
<term>Glutathione Transferase</term>
<term>Metallothionein</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Escherichia coli</term>
<term>Poaceae</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN des plantes</term>
<term>Escherichia coli</term>
<term>Glutathione transferase</term>
<term>Métallothionéine</term>
<term>Poaceae</term>
<term>Protéines végétales</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glutathione Transferase</term>
<term>Hydrogen Peroxide</term>
<term>Metallothionein</term>
<term>Metals, Heavy</term>
<term>Plant Proteins</term>
<term>Reactive Oxygen Species</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Espèces réactives de l'oxygène</term>
<term>Glutathione transferase</term>
<term>Métallothionéine</term>
<term>Métaux lourds</term>
<term>Peroxyde d'hydrogène</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Cloning, Molecular</term>
<term>Gene Expression Regulation, Plant</term>
<term>Molecular Weight</term>
<term>Phylogeny</term>
<term>Salinity</term>
<term>Sequence Alignment</term>
<term>Sequence Analysis, DNA</term>
<term>Spectrophotometry, Atomic</term>
<term>Stress, Physiological</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alignement de séquences</term>
<term>Analyse de séquence d'ADN</term>
<term>Clonage moléculaire</term>
<term>Masse moléculaire</term>
<term>Phylogenèse</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Salinité</term>
<term>Spectrophotométrie atomique</term>
<term>Stress physiologique</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Metallothioneins are low-molecular weight and cysteine-rich metal-binding proteins that play predominant cellular roles in the scavenging of reactive oxygen species and in mediating metal metabolism. To evaluate the role of a type-2 metallothionein-like gene from Puccinellia tenuiflora (PutMT2), the gene was over-expressed in yeast, and growth was assessed under a variety of abiotic stress conditions including peroxide (H2O2), salinity (NaCl and NaHCO3), and metal stress. PutMT2 overexpression in yeast improved the tolerance of cells to H2O2, NaCl, NaHCO3, Zn(2+), Fe(2+), Fe(3+), Cd(2+), Cr(6+), and Ag(+), but increased the sensitivity of cells to Mn(2+), Co(2+), Cu(2+), and Ni(2+) compared with control cells. PutMT2 was then expressed in Escherichia coli BL21as a glutathione S-transferase (GST) fusion protein (GST-PutMT2), and the metal-binding ability of GST-PutMT2 was analyzed and compared with GST alone using inductively coupled plasma atomic emission spectroscopy. Results showed that PutMT2 could bind to Cr, Cd, Co, Ag, Ba, Pb, Mn, Zn, Fe, Cu, P, Al, and Mg, but not Ni and As. There was no evidence to suggest that PutMT2 exhibited a specific or selective binding tendency to any individual metal ion. PutMT2 protein bound to Zn, Na, and Cu in vivo, perhaps with the highest affinity for Cu. Taken together, our results suggest that PutMT2 protein could play an important role in improving metal tolerance by metal binding in yeast. However, additional studies are required to confirm these results and to clarify the function of PutMT2 in transgenic plants.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24973879</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>12</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1573-4978</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>41</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2014</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Molecular biology reports</Title>
<ISOAbbreviation>Mol Biol Rep</ISOAbbreviation>
</Journal>
<ArticleTitle>Abiotic stress response in yeast and metal-binding ability of a type 2 metallothionein-like protein (PutMT2) from Puccinellia tenuiflora.</ArticleTitle>
<Pagination>
<MedlinePgn>5839-49</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s11033-014-3458-1</ELocationID>
<Abstract>
<AbstractText>Metallothioneins are low-molecular weight and cysteine-rich metal-binding proteins that play predominant cellular roles in the scavenging of reactive oxygen species and in mediating metal metabolism. To evaluate the role of a type-2 metallothionein-like gene from Puccinellia tenuiflora (PutMT2), the gene was over-expressed in yeast, and growth was assessed under a variety of abiotic stress conditions including peroxide (H2O2), salinity (NaCl and NaHCO3), and metal stress. PutMT2 overexpression in yeast improved the tolerance of cells to H2O2, NaCl, NaHCO3, Zn(2+), Fe(2+), Fe(3+), Cd(2+), Cr(6+), and Ag(+), but increased the sensitivity of cells to Mn(2+), Co(2+), Cu(2+), and Ni(2+) compared with control cells. PutMT2 was then expressed in Escherichia coli BL21as a glutathione S-transferase (GST) fusion protein (GST-PutMT2), and the metal-binding ability of GST-PutMT2 was analyzed and compared with GST alone using inductively coupled plasma atomic emission spectroscopy. Results showed that PutMT2 could bind to Cr, Cd, Co, Ag, Ba, Pb, Mn, Zn, Fe, Cu, P, Al, and Mg, but not Ni and As. There was no evidence to suggest that PutMT2 exhibited a specific or selective binding tendency to any individual metal ion. PutMT2 protein bound to Zn, Na, and Cu in vivo, perhaps with the highest affinity for Cu. Taken together, our results suggest that PutMT2 protein could play an important role in improving metal tolerance by metal binding in yeast. However, additional studies are required to confirm these results and to clarify the function of PutMT2 in transgenic plants.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Min</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Centre (ASNESC), Northeast Forestry University, Harbin, 150040, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Takano</LastName>
<ForeName>Tetsuo</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Shenkui</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Xinxin</ForeName>
<Initials>X</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>06</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Mol Biol Rep</MedlineTA>
<NlmUniqueID>0403234</NlmUniqueID>
<ISSNLinking>0301-4851</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018744">DNA, Plant</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D019216">Metals, Heavy</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017382">Reactive Oxygen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9038-94-2</RegistryNumber>
<NameOfSubstance UI="D008668">Metallothionein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>BBX060AN9V</RegistryNumber>
<NameOfSubstance UI="D006861">Hydrogen Peroxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.5.1.18</RegistryNumber>
<NameOfSubstance UI="D005982">Glutathione Transferase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003001" MajorTopicYN="N">Cloning, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018744" MajorTopicYN="N">DNA, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="Y">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005982" MajorTopicYN="N">Glutathione Transferase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006861" MajorTopicYN="N">Hydrogen Peroxide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008668" MajorTopicYN="N">Metallothionein</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019216" MajorTopicYN="N">Metals, Heavy</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008970" MajorTopicYN="N">Molecular Weight</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006109" MajorTopicYN="N">Poaceae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017382" MajorTopicYN="N">Reactive Oxygen Species</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054712" MajorTopicYN="N">Salinity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013054" MajorTopicYN="N">Spectrophotometry, Atomic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>12</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>06</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>6</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>6</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24973879</ArticleId>
<ArticleId IdType="doi">10.1007/s11033-014-3458-1</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol. 2008 Apr;146(4):1697-706</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18287486</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(1):339-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19033550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicology. 2001 Jun 21;163(2-3):93-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11516518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biodivers. 2008 Oct;5(10):1990-2013</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18972521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Apr;155(4):1750-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21459979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Genet. 1996 Jun;34(5-6):239-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8813055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2007 Nov;164(11):1499-515</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17175063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2009 May;70(1-2):219-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19229638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Inorg Chem. 2011 Oct;16(7):1035-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21688177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1995 Apr 15;11(4):355-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7785336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein J. 2013 Feb;32(2):131-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23385446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2006;57(14):3575-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16957018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochimie. 2006 Jun;88(6):583-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16377055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 Apr;113(4):1293-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9112777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 2011 Mar;38(3):1567-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20835888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2007 Aug;45(8):567-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17611115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2011 Mar;13(2):225-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21309968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Oct 8;323(1):72-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15351703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(1):187-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19033549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2006 Jun;64(1):121-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16330073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metallomics. 2009 Nov;1(6):489-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21305157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aquat Toxicol. 2010 Aug 1;99(1):86-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20435357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1997 Mar;33(4):583-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9132050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 1993 Mar;14(3):325-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8458590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Lett. 2007 Aug;29(8):1301-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17516025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Zhongguo Zhong Yao Za Zhi. 2007 Jul;32(14):1393-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17966348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2013 Mar;64:25-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23344478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2012 Apr;35(4):770-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22014117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Jul;135(3):1447-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15220467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Lett. 2006 Nov;28(21):1749-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16912923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1985 Jan 21;827(1):36-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2981555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Trace Elem Res. 2005 Sep;106(3):253-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16141473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Res Commun. 1987;2(4-6):233-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3504809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protoplasma. 2013 Feb;250(1):381-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22688806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2004 Dec;55(408):2483-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15448172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Oct;118(2):387-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9765524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2002;53:159-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12221971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Apr;146(4):1637-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18258694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1988 Dec 1;256(2):475-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2851992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1994 Nov 11;22(22):4673-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7984417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2012 Mar;235(3):523-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21971996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biopolymers. 2007 Jun 15;86(3):240-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17377964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 2012 Mar;39(3):2059-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21643753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Expr Purif. 2004 Oct;37(2):306-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15358351</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Liu, Shenkui" sort="Liu, Shenkui" uniqKey="Liu S" first="Shenkui" last="Liu">Shenkui Liu</name>
<name sortKey="Takano, Tetsuo" sort="Takano, Tetsuo" uniqKey="Takano T" first="Tetsuo" last="Takano">Tetsuo Takano</name>
<name sortKey="Zhang, Xinxin" sort="Zhang, Xinxin" uniqKey="Zhang X" first="Xinxin" last="Zhang">Xinxin Zhang</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Zhang, Min" sort="Zhang, Min" uniqKey="Zhang M" first="Min" last="Zhang">Min Zhang</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MetalBindProtPlantV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000166 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000166 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MetalBindProtPlantV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24973879
   |texte=   Abiotic stress response in yeast and metal-binding ability of a type 2 metallothionein-like protein (PutMT2) from Puccinellia tenuiflora.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24973879" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MetalBindProtPlantV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:03:59 2020. Site generation: Fri Nov 20 11:04:44 2020