Serveur d'exploration sur les protéines de liaison chez les plantes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Detoxification of arsenic by phytochelatins in plants.

Identifieur interne : 000440 ( Main/Corpus ); précédent : 000439; suivant : 000441

Detoxification of arsenic by phytochelatins in plants.

Auteurs : M E Schmöger ; M. Oven ; E. Grill

Source :

RBID : pubmed:10712543

English descriptors

Abstract

As is a ubiquitous element present in the atmosphere as well as in the aquatic and terrestrial environments. Arsenite and arsenate are the major forms of As intoxication, and these anions are readily taken up by plants. Both anions efficiently induce the biosynthesis of phytochelatins (PCs) ([gamma-glutamate-cysteine](n)-glycine) in vivo and in vitro. The rapid induction of the metal-binding PCs has been observed in cell suspension cultures of Rauvolfia serpentina, in seedlings of Arabidopsis, and in enzyme preparations of Silene vulgaris upon challenge to arsenicals. The rate of PC formation in enzyme preparations was lower compared with Cd-induced biosynthesis, but was accompanied by a prolonged induction phase that resulted finally in higher peptide levels. An approximately 3:1 ratio of the sulfhydryl groups from PCs to As is compatible with reported As-glutathione complexes. The identity of the As-induced PCs and of reconstituted metal-peptide complexes has unequivocally been demonstrated by electrospray ionization mass spectroscopy. Gel filtration experiments and inhibitor studies also indicate a complexation and detoxification of As by the induced PCs.

DOI: 10.1104/pp.122.3.793
PubMed: 10712543
PubMed Central: PMC58915

Links to Exploration step

pubmed:10712543

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Detoxification of arsenic by phytochelatins in plants.</title>
<author>
<name sortKey="Schmoger, M E" sort="Schmoger, M E" uniqKey="Schmoger M" first="M E" last="Schmöger">M E Schmöger</name>
<affiliation>
<nlm:affiliation>Lehrstuhl für Botanik, Technische Universität München, Biologikum-Weihenstephan, Am Hochanger 4, 85350 Freising, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Oven, M" sort="Oven, M" uniqKey="Oven M" first="M" last="Oven">M. Oven</name>
</author>
<author>
<name sortKey="Grill, E" sort="Grill, E" uniqKey="Grill E" first="E" last="Grill">E. Grill</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2000">2000</date>
<idno type="RBID">pubmed:10712543</idno>
<idno type="pmid">10712543</idno>
<idno type="pmc">PMC58915</idno>
<idno type="doi">10.1104/pp.122.3.793</idno>
<idno type="wicri:Area/Main/Corpus">000440</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000440</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Detoxification of arsenic by phytochelatins in plants.</title>
<author>
<name sortKey="Schmoger, M E" sort="Schmoger, M E" uniqKey="Schmoger M" first="M E" last="Schmöger">M E Schmöger</name>
<affiliation>
<nlm:affiliation>Lehrstuhl für Botanik, Technische Universität München, Biologikum-Weihenstephan, Am Hochanger 4, 85350 Freising, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Oven, M" sort="Oven, M" uniqKey="Oven M" first="M" last="Oven">M. Oven</name>
</author>
<author>
<name sortKey="Grill, E" sort="Grill, E" uniqKey="Grill E" first="E" last="Grill">E. Grill</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="ISSN">0032-0889</idno>
<imprint>
<date when="2000" type="published">2000</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arsenic (metabolism)</term>
<term>Arsenic (toxicity)</term>
<term>Binding Sites (MeSH)</term>
<term>Glutathione (MeSH)</term>
<term>Inactivation, Metabolic (MeSH)</term>
<term>Mass Spectrometry (MeSH)</term>
<term>Metalloproteins (chemistry)</term>
<term>Metalloproteins (metabolism)</term>
<term>Phytochelatins (MeSH)</term>
<term>Plant Proteins (chemistry)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plants (drug effects)</term>
<term>Plants (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Metalloproteins</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Arsenic</term>
<term>Metalloproteins</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="toxicity" xml:lang="en">
<term>Arsenic</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Plants</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plants</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Binding Sites</term>
<term>Glutathione</term>
<term>Inactivation, Metabolic</term>
<term>Mass Spectrometry</term>
<term>Phytochelatins</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">As is a ubiquitous element present in the atmosphere as well as in the aquatic and terrestrial environments. Arsenite and arsenate are the major forms of As intoxication, and these anions are readily taken up by plants. Both anions efficiently induce the biosynthesis of phytochelatins (PCs) ([gamma-glutamate-cysteine](n)-glycine) in vivo and in vitro. The rapid induction of the metal-binding PCs has been observed in cell suspension cultures of Rauvolfia serpentina, in seedlings of Arabidopsis, and in enzyme preparations of Silene vulgaris upon challenge to arsenicals. The rate of PC formation in enzyme preparations was lower compared with Cd-induced biosynthesis, but was accompanied by a prolonged induction phase that resulted finally in higher peptide levels. An approximately 3:1 ratio of the sulfhydryl groups from PCs to As is compatible with reported As-glutathione complexes. The identity of the As-induced PCs and of reconstituted metal-peptide complexes has unequivocally been demonstrated by electrospray ionization mass spectroscopy. Gel filtration experiments and inhibitor studies also indicate a complexation and detoxification of As by the induced PCs.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">10712543</PMID>
<DateCompleted>
<Year>2000</Year>
<Month>05</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>05</Month>
<Day>14</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0032-0889</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>122</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2000</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Detoxification of arsenic by phytochelatins in plants.</ArticleTitle>
<Pagination>
<MedlinePgn>793-801</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>As is a ubiquitous element present in the atmosphere as well as in the aquatic and terrestrial environments. Arsenite and arsenate are the major forms of As intoxication, and these anions are readily taken up by plants. Both anions efficiently induce the biosynthesis of phytochelatins (PCs) ([gamma-glutamate-cysteine](n)-glycine) in vivo and in vitro. The rapid induction of the metal-binding PCs has been observed in cell suspension cultures of Rauvolfia serpentina, in seedlings of Arabidopsis, and in enzyme preparations of Silene vulgaris upon challenge to arsenicals. The rate of PC formation in enzyme preparations was lower compared with Cd-induced biosynthesis, but was accompanied by a prolonged induction phase that resulted finally in higher peptide levels. An approximately 3:1 ratio of the sulfhydryl groups from PCs to As is compatible with reported As-glutathione complexes. The identity of the As-induced PCs and of reconstituted metal-peptide complexes has unequivocally been demonstrated by electrospray ionization mass spectroscopy. Gel filtration experiments and inhibitor studies also indicate a complexation and detoxification of As by the induced PCs.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Schmöger</LastName>
<ForeName>M E</ForeName>
<Initials>ME</Initials>
<AffiliationInfo>
<Affiliation>Lehrstuhl für Botanik, Technische Universität München, Biologikum-Weihenstephan, Am Hochanger 4, 85350 Freising, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Oven</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Grill</LastName>
<ForeName>E</ForeName>
<Initials>E</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008667">Metalloproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>98726-08-0</RegistryNumber>
<NameOfSubstance UI="D054811">Phytochelatins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N712M78A8G</RegistryNumber>
<NameOfSubstance UI="D001151">Arsenic</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001151" MajorTopicYN="N">Arsenic</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000633" MajorTopicYN="Y">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008658" MajorTopicYN="N">Inactivation, Metabolic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013058" MajorTopicYN="N">Mass Spectrometry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008667" MajorTopicYN="N">Metalloproteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054811" MajorTopicYN="N">Phytochelatins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010944" MajorTopicYN="N">Plants</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2000</Year>
<Month>3</Month>
<Day>11</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2000</Year>
<Month>6</Month>
<Day>8</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2000</Year>
<Month>3</Month>
<Day>11</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">10712543</ArticleId>
<ArticleId IdType="pmc">PMC58915</ArticleId>
<ArticleId IdType="doi">10.1104/pp.122.3.793</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochem J. 1947;41(1):56-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16748119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 Dec;109(4):1427-1433</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12228679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1996 Feb 15;314 ( Pt 1):73-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8660312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1979 Aug 25;254(16):7558-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">38242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chromatogr B Biomed Sci Appl. 1998 Sep 25;716(1-2):83-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9824221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1995 May 1;307 ( Pt 3):697-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7741699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Microbiol. 1992;157(4):305-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1534214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1989 Sep;86(18):6838-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16594069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1990 Apr;92(4):1086-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16667375</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1999 Jun;11(6):1153-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10368185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1985 Nov 8;230(4726):674-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17797291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Inorg Biochem. 1996 Feb;61(2):125-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8576707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1996 Nov 7;179(1):9-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8991852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1998 Jul 10;281(5374):269-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9657724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1998 Mar 20;279(5358):1850-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9537900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1992 Sep 11;257(5076):1496-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1523409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1987 Jan;84(2):439-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16593801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1992 Sep;100(1):100-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16652930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Toxicol Environ Health. 1987;22(2):163-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3669099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1988 Feb 29;151(1):32-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2894829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Res Toxicol. 1993 Jan-Feb;6(1):102-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8448339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1995 Oct 13;215(2):730-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7488015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1999 Jun 15;18(12):3325-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10369673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1996 Nov 7;179(1):21-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8955625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1996 Apr;110(4):1145-1150</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12226248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 1975 Jul-Aug;23(4):674-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1141512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1999 Jan 11;1429(2):351-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9989220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1988 May 12;333(6169):134-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3285219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 1988 Oct;7(6):375-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24240248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 Apr;107(4):1059-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7770517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1994;233:395-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8015475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1991;205:333-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1779793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Pharmacol Toxicol. 1997;37:397-419</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9131259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1947;41(1):74-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16748122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1976 May 7;72:248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">942051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):7110-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10359847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Cell Biol. 1997 Aug;73(4):378-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9270881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1991;205:613-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1779825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1991 Jun 17;284(1):66-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1905645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1987 Jul;84(3):574-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16665482</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MetalBindProtPlantV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000440 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000440 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MetalBindProtPlantV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:10712543
   |texte=   Detoxification of arsenic by phytochelatins in plants.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:10712543" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MetalBindProtPlantV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:03:59 2020. Site generation: Fri Nov 20 11:04:44 2020