Serveur d'exploration sur les protéines de liaison chez les plantes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genetic engineering of Escherichia coli for enhanced uptake and bioaccumulation of mercury.

Identifieur interne : 000412 ( Main/Corpus ); précédent : 000411; suivant : 000413

Genetic engineering of Escherichia coli for enhanced uptake and bioaccumulation of mercury.

Auteurs : W. Bae ; R K Mehra ; A. Mulchandani ; W. Chen

Source :

RBID : pubmed:11679366

English descriptors

Abstract

Synthetic phytochelatins (ECs) are a new class of metal-binding peptides with a repetitive metal-binding motif, (Glu-Cys)(n)Gly, which were shown to bind heavy metals more effectively than metallothioneins. However, the limited uptake across the cell membrane is often the rate-limiting factor for the intracellular bioaccumulation of heavy metals by genetically engineered organisms expressing these metal-binding peptides. In this paper, two potential solutions were investigated to overcome this uptake limitation either by coexpressing an Hg(2+) transport system with (Glu-Cys)(20)Gly (EC20) or by directly expressing EC20 on the cell surface. Both approaches were equally effective in increasing the bioaccumulation of Hg(2+). Since the available transport systems are presently limited to only a few heavy metals, our results suggest that bioaccumulation by bacterial sorbents with surface-expressed metal-binding peptides may be useful as a universal strategy for the cleanup of heavy metal contamination.

DOI: 10.1128/AEM.67.11.5335-5338.2001
PubMed: 11679366
PubMed Central: PMC93311

Links to Exploration step

pubmed:11679366

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genetic engineering of Escherichia coli for enhanced uptake and bioaccumulation of mercury.</title>
<author>
<name sortKey="Bae, W" sort="Bae, W" uniqKey="Bae W" first="W" last="Bae">W. Bae</name>
<affiliation>
<nlm:affiliation>Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mehra, R K" sort="Mehra, R K" uniqKey="Mehra R" first="R K" last="Mehra">R K Mehra</name>
</author>
<author>
<name sortKey="Mulchandani, A" sort="Mulchandani, A" uniqKey="Mulchandani A" first="A" last="Mulchandani">A. Mulchandani</name>
</author>
<author>
<name sortKey="Chen, W" sort="Chen, W" uniqKey="Chen W" first="W" last="Chen">W. Chen</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2001">2001</date>
<idno type="RBID">pubmed:11679366</idno>
<idno type="pmid">11679366</idno>
<idno type="doi">10.1128/AEM.67.11.5335-5338.2001</idno>
<idno type="pmc">PMC93311</idno>
<idno type="wicri:Area/Main/Corpus">000412</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000412</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Genetic engineering of Escherichia coli for enhanced uptake and bioaccumulation of mercury.</title>
<author>
<name sortKey="Bae, W" sort="Bae, W" uniqKey="Bae W" first="W" last="Bae">W. Bae</name>
<affiliation>
<nlm:affiliation>Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mehra, R K" sort="Mehra, R K" uniqKey="Mehra R" first="R K" last="Mehra">R K Mehra</name>
</author>
<author>
<name sortKey="Mulchandani, A" sort="Mulchandani, A" uniqKey="Mulchandani A" first="A" last="Mulchandani">A. Mulchandani</name>
</author>
<author>
<name sortKey="Chen, W" sort="Chen, W" uniqKey="Chen W" first="W" last="Chen">W. Chen</name>
</author>
</analytic>
<series>
<title level="j">Applied and environmental microbiology</title>
<idno type="ISSN">0099-2240</idno>
<imprint>
<date when="2001" type="published">2001</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chelating Agents (chemical synthesis)</term>
<term>Chelating Agents (metabolism)</term>
<term>Escherichia coli (genetics)</term>
<term>Escherichia coli (growth & development)</term>
<term>Escherichia coli (metabolism)</term>
<term>Genetic Engineering (methods)</term>
<term>Glutathione (MeSH)</term>
<term>Mercury (metabolism)</term>
<term>Metalloproteins (chemical synthesis)</term>
<term>Metalloproteins (genetics)</term>
<term>Metalloproteins (metabolism)</term>
<term>Phytochelatins (MeSH)</term>
<term>Plant Proteins (chemical synthesis)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemical synthesis" xml:lang="en">
<term>Chelating Agents</term>
<term>Metalloproteins</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Metalloproteins</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Chelating Agents</term>
<term>Mercury</term>
<term>Metalloproteins</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Genetic Engineering</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Glutathione</term>
<term>Phytochelatins</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Synthetic phytochelatins (ECs) are a new class of metal-binding peptides with a repetitive metal-binding motif, (Glu-Cys)(n)Gly, which were shown to bind heavy metals more effectively than metallothioneins. However, the limited uptake across the cell membrane is often the rate-limiting factor for the intracellular bioaccumulation of heavy metals by genetically engineered organisms expressing these metal-binding peptides. In this paper, two potential solutions were investigated to overcome this uptake limitation either by coexpressing an Hg(2+) transport system with (Glu-Cys)(20)Gly (EC20) or by directly expressing EC20 on the cell surface. Both approaches were equally effective in increasing the bioaccumulation of Hg(2+). Since the available transport systems are presently limited to only a few heavy metals, our results suggest that bioaccumulation by bacterial sorbents with surface-expressed metal-binding peptides may be useful as a universal strategy for the cleanup of heavy metal contamination.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">11679366</PMID>
<DateCompleted>
<Year>2002</Year>
<Month>01</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0099-2240</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>67</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2001</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Applied and environmental microbiology</Title>
<ISOAbbreviation>Appl Environ Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Genetic engineering of Escherichia coli for enhanced uptake and bioaccumulation of mercury.</ArticleTitle>
<Pagination>
<MedlinePgn>5335-8</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Synthetic phytochelatins (ECs) are a new class of metal-binding peptides with a repetitive metal-binding motif, (Glu-Cys)(n)Gly, which were shown to bind heavy metals more effectively than metallothioneins. However, the limited uptake across the cell membrane is often the rate-limiting factor for the intracellular bioaccumulation of heavy metals by genetically engineered organisms expressing these metal-binding peptides. In this paper, two potential solutions were investigated to overcome this uptake limitation either by coexpressing an Hg(2+) transport system with (Glu-Cys)(20)Gly (EC20) or by directly expressing EC20 on the cell surface. Both approaches were equally effective in increasing the bioaccumulation of Hg(2+). Since the available transport systems are presently limited to only a few heavy metals, our results suggest that bioaccumulation by bacterial sorbents with surface-expressed metal-binding peptides may be useful as a universal strategy for the cleanup of heavy metal contamination.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bae</LastName>
<ForeName>W</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mehra</LastName>
<ForeName>R K</ForeName>
<Initials>RK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mulchandani</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>W</ForeName>
<Initials>W</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Appl Environ Microbiol</MedlineTA>
<NlmUniqueID>7605801</NlmUniqueID>
<ISSNLinking>0099-2240</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002614">Chelating Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008667">Metalloproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>98726-08-0</RegistryNumber>
<NameOfSubstance UI="D054811">Phytochelatins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>FXS1BY2PGL</RegistryNumber>
<NameOfSubstance UI="D008628">Mercury</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002614" MajorTopicYN="N">Chelating Agents</DescriptorName>
<QualifierName UI="Q000138" MajorTopicYN="N">chemical synthesis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005818" MajorTopicYN="N">Genetic Engineering</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008628" MajorTopicYN="N">Mercury</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008667" MajorTopicYN="N">Metalloproteins</DescriptorName>
<QualifierName UI="Q000138" MajorTopicYN="N">chemical synthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054811" MajorTopicYN="N">Phytochelatins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000138" MajorTopicYN="N">chemical synthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2001</Year>
<Month>10</Month>
<Day>27</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2002</Year>
<Month>1</Month>
<Day>18</Day>
<Hour>10</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2001</Year>
<Month>10</Month>
<Day>27</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">11679366</ArticleId>
<ArticleId IdType="doi">10.1128/AEM.67.11.5335-5338.2001</ArticleId>
<ArticleId IdType="pmc">PMC93311</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Bacteriol. 1998 May;180(9):2280-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9573175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1985;33(1):103-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2985470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2000 Dec 5;70(5):518-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11042548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2000 Dec;66(12):5383-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11097917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1970 Aug 15;227(5259):680-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5432063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1985 May 10;260(9):5342-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3988757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biodegradation. 1997;8(2):97-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9342882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1990 Sep;56(9):2748-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2148862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Toxicol. 1995;25(1):1-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7734058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1995 Jul;17(1):25-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7476206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 1995 Nov;43(6):1112-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8590662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1996 Feb 15;314 ( Pt 1):73-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8660312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1997 Jun;63(6):2442-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9172366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1988 May 12;333(6169):134-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3285219</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MetalBindProtPlantV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000412 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000412 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MetalBindProtPlantV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:11679366
   |texte=   Genetic engineering of Escherichia coli for enhanced uptake and bioaccumulation of mercury.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:11679366" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MetalBindProtPlantV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:03:59 2020. Site generation: Fri Nov 20 11:04:44 2020