Serveur d'exploration sur les protéines de liaison chez les plantes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Molecular characterization of the homo-phytochelatin synthase of soybean Glycine max: relation to phytochelatin synthase.

Identifieur interne : 000410 ( Main/Corpus ); précédent : 000409; suivant : 000411

Molecular characterization of the homo-phytochelatin synthase of soybean Glycine max: relation to phytochelatin synthase.

Auteurs : Matjaz Oven ; Jonathan E. Page ; Meinhart H. Zenk ; Toni M. Kutchan

Source :

RBID : pubmed:11706029

English descriptors

Abstract

The phytochelatin homologs homo-phytochelatins are heavy metal-binding peptides present in many legumes. To study the biosynthesis of these compounds, we have isolated and functionally expressed a cDNA GmhPCS1 encoding homo-phytochelatin synthase from Glycine max, a plant known to accumulate homo-phytochelatins rather than phytochelatins upon the exposure to heavy metals. The catalytic properties of GmhPCS1 were compared with the phytochelatin synthase AtPCS1 from Arabidopsis thaliana. When assayed only in the presence of glutathione, both enzymes catalyzed phytochelatin formation. GmhPCS1 accepted homoglutathione as the sole substrate for the synthesis of homo-phytochelatins whereas AtPCS1 did not. Homo-phytochelatin synthesis activity of both recombinant enzymes was significantly higher when glutathione was included in the reaction mixture. The incorporation of both glutathione and homoglutathione into homo-phytochelatin, n = 2, was demonstrated using GmhPCS1 and AtPCS1. In addition to bis(glutathionato)-metal complexes, various other metal-thiolates were shown to contribute to the activation of phytochelatin synthase. These complexes were not accepted as substrates by the enzyme, thereby suggesting that a recently proposed model of activation cannot fully explain the catalytic mechanism of phytochelatin synthase (Vatamaniuk, O. K., Mari, S., Lu, Y. P., and Rea, P. A. (2000) J. Biol. Chem. 275, 31451-31459).

DOI: 10.1074/jbc.M108254200
PubMed: 11706029

Links to Exploration step

pubmed:11706029

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Molecular characterization of the homo-phytochelatin synthase of soybean Glycine max: relation to phytochelatin synthase.</title>
<author>
<name sortKey="Oven, Matjaz" sort="Oven, Matjaz" uniqKey="Oven M" first="Matjaz" last="Oven">Matjaz Oven</name>
<affiliation>
<nlm:affiliation>Leibniz-Institut für Pflanzenbiochemie, Weinberg 3 and the Biozentrum der Universität Halle, Weinbergweg 22, Halle/Saale 06120, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Page, Jonathan E" sort="Page, Jonathan E" uniqKey="Page J" first="Jonathan E" last="Page">Jonathan E. Page</name>
</author>
<author>
<name sortKey="Zenk, Meinhart H" sort="Zenk, Meinhart H" uniqKey="Zenk M" first="Meinhart H" last="Zenk">Meinhart H. Zenk</name>
</author>
<author>
<name sortKey="Kutchan, Toni M" sort="Kutchan, Toni M" uniqKey="Kutchan T" first="Toni M" last="Kutchan">Toni M. Kutchan</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2002">2002</date>
<idno type="RBID">pubmed:11706029</idno>
<idno type="pmid">11706029</idno>
<idno type="doi">10.1074/jbc.M108254200</idno>
<idno type="wicri:Area/Main/Corpus">000410</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000410</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Molecular characterization of the homo-phytochelatin synthase of soybean Glycine max: relation to phytochelatin synthase.</title>
<author>
<name sortKey="Oven, Matjaz" sort="Oven, Matjaz" uniqKey="Oven M" first="Matjaz" last="Oven">Matjaz Oven</name>
<affiliation>
<nlm:affiliation>Leibniz-Institut für Pflanzenbiochemie, Weinberg 3 and the Biozentrum der Universität Halle, Weinbergweg 22, Halle/Saale 06120, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Page, Jonathan E" sort="Page, Jonathan E" uniqKey="Page J" first="Jonathan E" last="Page">Jonathan E. Page</name>
</author>
<author>
<name sortKey="Zenk, Meinhart H" sort="Zenk, Meinhart H" uniqKey="Zenk M" first="Meinhart H" last="Zenk">Meinhart H. Zenk</name>
</author>
<author>
<name sortKey="Kutchan, Toni M" sort="Kutchan, Toni M" uniqKey="Kutchan T" first="Toni M" last="Kutchan">Toni M. Kutchan</name>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="ISSN">0021-9258</idno>
<imprint>
<date when="2002" type="published">2002</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Aminoacyltransferases (chemistry)</term>
<term>Aminoacyltransferases (genetics)</term>
<term>Arabidopsis (enzymology)</term>
<term>Binding Sites (MeSH)</term>
<term>Catalysis (MeSH)</term>
<term>Chromatography, High Pressure Liquid (MeSH)</term>
<term>Cloning, Molecular (MeSH)</term>
<term>DNA, Complementary (metabolism)</term>
<term>Dose-Response Relationship, Drug (MeSH)</term>
<term>Enzyme Activation (MeSH)</term>
<term>Escherichia coli (enzymology)</term>
<term>Kinetics (MeSH)</term>
<term>Mass Spectrometry (MeSH)</term>
<term>Metals (metabolism)</term>
<term>Models, Chemical (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Recombinant Proteins (chemistry)</term>
<term>Recombinant Proteins (metabolism)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
<term>Soybeans (enzymology)</term>
<term>Sulfhydryl Compounds (chemistry)</term>
<term>Time Factors (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Aminoacyltransferases</term>
<term>Recombinant Proteins</term>
<term>Sulfhydryl Compounds</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Aminoacyltransferases</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Arabidopsis</term>
<term>Escherichia coli</term>
<term>Soybeans</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>DNA, Complementary</term>
<term>Metals</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Binding Sites</term>
<term>Catalysis</term>
<term>Chromatography, High Pressure Liquid</term>
<term>Cloning, Molecular</term>
<term>Dose-Response Relationship, Drug</term>
<term>Enzyme Activation</term>
<term>Kinetics</term>
<term>Mass Spectrometry</term>
<term>Models, Chemical</term>
<term>Molecular Sequence Data</term>
<term>Sequence Homology, Amino Acid</term>
<term>Time Factors</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The phytochelatin homologs homo-phytochelatins are heavy metal-binding peptides present in many legumes. To study the biosynthesis of these compounds, we have isolated and functionally expressed a cDNA GmhPCS1 encoding homo-phytochelatin synthase from Glycine max, a plant known to accumulate homo-phytochelatins rather than phytochelatins upon the exposure to heavy metals. The catalytic properties of GmhPCS1 were compared with the phytochelatin synthase AtPCS1 from Arabidopsis thaliana. When assayed only in the presence of glutathione, both enzymes catalyzed phytochelatin formation. GmhPCS1 accepted homoglutathione as the sole substrate for the synthesis of homo-phytochelatins whereas AtPCS1 did not. Homo-phytochelatin synthesis activity of both recombinant enzymes was significantly higher when glutathione was included in the reaction mixture. The incorporation of both glutathione and homoglutathione into homo-phytochelatin, n = 2, was demonstrated using GmhPCS1 and AtPCS1. In addition to bis(glutathionato)-metal complexes, various other metal-thiolates were shown to contribute to the activation of phytochelatin synthase. These complexes were not accepted as substrates by the enzyme, thereby suggesting that a recently proposed model of activation cannot fully explain the catalytic mechanism of phytochelatin synthase (Vatamaniuk, O. K., Mari, S., Lu, Y. P., and Rea, P. A. (2000) J. Biol. Chem. 275, 31451-31459).</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">11706029</PMID>
<DateCompleted>
<Year>2002</Year>
<Month>03</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2006</Year>
<Month>11</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0021-9258</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>277</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2002</Year>
<Month>Feb</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Molecular characterization of the homo-phytochelatin synthase of soybean Glycine max: relation to phytochelatin synthase.</ArticleTitle>
<Pagination>
<MedlinePgn>4747-54</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The phytochelatin homologs homo-phytochelatins are heavy metal-binding peptides present in many legumes. To study the biosynthesis of these compounds, we have isolated and functionally expressed a cDNA GmhPCS1 encoding homo-phytochelatin synthase from Glycine max, a plant known to accumulate homo-phytochelatins rather than phytochelatins upon the exposure to heavy metals. The catalytic properties of GmhPCS1 were compared with the phytochelatin synthase AtPCS1 from Arabidopsis thaliana. When assayed only in the presence of glutathione, both enzymes catalyzed phytochelatin formation. GmhPCS1 accepted homoglutathione as the sole substrate for the synthesis of homo-phytochelatins whereas AtPCS1 did not. Homo-phytochelatin synthesis activity of both recombinant enzymes was significantly higher when glutathione was included in the reaction mixture. The incorporation of both glutathione and homoglutathione into homo-phytochelatin, n = 2, was demonstrated using GmhPCS1 and AtPCS1. In addition to bis(glutathionato)-metal complexes, various other metal-thiolates were shown to contribute to the activation of phytochelatin synthase. These complexes were not accepted as substrates by the enzyme, thereby suggesting that a recently proposed model of activation cannot fully explain the catalytic mechanism of phytochelatin synthase (Vatamaniuk, O. K., Mari, S., Lu, Y. P., and Rea, P. A. (2000) J. Biol. Chem. 275, 31451-31459).</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Oven</LastName>
<ForeName>Matjaz</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Leibniz-Institut für Pflanzenbiochemie, Weinberg 3 and the Biozentrum der Universität Halle, Weinbergweg 22, Halle/Saale 06120, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Page</LastName>
<ForeName>Jonathan E</ForeName>
<Initials>JE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zenk</LastName>
<ForeName>Meinhart H</ForeName>
<Initials>MH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kutchan</LastName>
<ForeName>Toni M</ForeName>
<Initials>TM</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>AF411075</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2001</Year>
<Month>11</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018076">DNA, Complementary</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008670">Metals</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013438">Sulfhydryl Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.3.2.-</RegistryNumber>
<NameOfSubstance UI="D019881">Aminoacyltransferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.3.2.15</RegistryNumber>
<NameOfSubstance UI="C093784">glutathione gamma-glutamylcysteinyltransferase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019881" MajorTopicYN="N">Aminoacyltransferases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002384" MajorTopicYN="N">Catalysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002851" MajorTopicYN="N">Chromatography, High Pressure Liquid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003001" MajorTopicYN="N">Cloning, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018076" MajorTopicYN="N">DNA, Complementary</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004305" MajorTopicYN="N">Dose-Response Relationship, Drug</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004789" MajorTopicYN="N">Enzyme Activation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013058" MajorTopicYN="N">Mass Spectrometry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008670" MajorTopicYN="N">Metals</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008956" MajorTopicYN="N">Models, Chemical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013025" MajorTopicYN="N">Soybeans</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013438" MajorTopicYN="N">Sulfhydryl Compounds</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2001</Year>
<Month>11</Month>
<Day>14</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2002</Year>
<Month>3</Month>
<Day>22</Day>
<Hour>10</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2001</Year>
<Month>11</Month>
<Day>14</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">11706029</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.M108254200</ArticleId>
<ArticleId IdType="pii">M108254200</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MetalBindProtPlantV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000410 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000410 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MetalBindProtPlantV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:11706029
   |texte=   Molecular characterization of the homo-phytochelatin synthase of soybean Glycine max: relation to phytochelatin synthase.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:11706029" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MetalBindProtPlantV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:03:59 2020. Site generation: Fri Nov 20 11:04:44 2020