Serveur d'exploration sur les protéines de liaison chez les plantes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mutagenic definition of a papain-like catalytic triad, sufficiency of the N-terminal domain for single-site core catalytic enzyme acylation, and C-terminal domain for augmentative metal activation of a eukaryotic phytochelatin synthase.

Identifieur interne : 000321 ( Main/Corpus ); précédent : 000320; suivant : 000322

Mutagenic definition of a papain-like catalytic triad, sufficiency of the N-terminal domain for single-site core catalytic enzyme acylation, and C-terminal domain for augmentative metal activation of a eukaryotic phytochelatin synthase.

Auteurs : Nataliya D. Romanyuk ; Daniel J. Rigden ; Olena K. Vatamaniuk ; Albert Lang ; Rebecca E. Cahoon ; Joseph M. Jez ; Philip A. Rea

Source :

RBID : pubmed:16714405

English descriptors

Abstract

Phytochelatin (PC) synthases are gamma-glutamylcysteine (gamma-Glu-Cys) dipeptidyl transpeptidases that catalyze the synthesis of heavy metal-binding PCs, (gamma-Glu-Cys)nGly polymers, from glutathione (GSH) and/or shorter chain PCs. Here it is shown through investigations of the enzyme from Arabidopsis (Arabidopsis thaliana; AtPCS1) that, although the N-terminal half of the protein, alone, is sufficient for core catalysis through the formation of a single-site enzyme acyl intermediate, it is not sufficient for acylation at a second site and augmentative stimulation by free Cd2+. A purified N-terminally hexahistidinyl-tagged AtPCS1 truncate containing only the first 221 N-terminal amino acid residues of the enzyme (HIS-AtPCS1_221tr) is competent in the synthesis of PCs from GSH in media containing Cd2+ or the synthesis of S-methyl-PCs from S-methylglutathione in media devoid of heavy metal ions. However, whereas its full-length hexahistidinyl-tagged equivalent, HIS-AtPCS1, undergoes gamma-Glu-Cys acylation at two sites during the Cd2+-dependent synthesis of PCs from GSH and is stimulated by free Cd2+ when synthesizing S-methyl-PCs from S-methylglutathione, HIS-AtPCS1_221tr undergoes gamma-Glu-Cys acylation at only one site when GSH is the substrate and is not directly stimulated, but instead inhibited, by free Cd2+ when S-methylglutathione is the substrate. Through the application of sequence search algorithms capable of detecting distant homologies, work we reported briefly before but not in its entirety, it has been determined that the N-terminal half of AtPCS1 and its equivalents from other sources have the hallmarks of a papain-like, Clan CA Cys protease. Whereas the fold assignment deduced from these analyses, which substantiates and is substantiated by the recent determination of the crystal structure of a distant prokaryotic PC synthase homolog from the cyanobacterium Nostoc, is capable of explaining the strict requirement for a conserved Cys residue, Cys-56 in the case of AtPCS1, for formation of the biosynthetically competent gamma-Glu-Cys enzyme acyl intermediate, the primary data from experiments directed at determining whether the other two residues, His-162 and Asp-180 of the putative papain-like catalytic triad of AtPCS1, are essential for catalysis have yet to be presented. This shortfall in our basic understanding of AtPCS1 is addressed here by the results of systematic site-directed mutagenesis studies that demonstrate that not only Cys-56 but also His-162 and Asp-180 are indeed required for net PC synthesis. It is therefore established experimentally that AtPCS1 and, by implication, other eukaryotic PC synthases are papain Cys protease superfamily members but ones, unlike their prokaryotic counterparts, which, in addition to having a papain-like N-terminal catalytic domain that undergoes primary gamma-Glu-Cys acylation, contain an auxiliary metal-sensing C-terminal domain that undergoes secondary gamma-Glu-Cys acylation.

DOI: 10.1104/pp.106.082131
PubMed: 16714405
PubMed Central: PMC1489916

Links to Exploration step

pubmed:16714405

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mutagenic definition of a papain-like catalytic triad, sufficiency of the N-terminal domain for single-site core catalytic enzyme acylation, and C-terminal domain for augmentative metal activation of a eukaryotic phytochelatin synthase.</title>
<author>
<name sortKey="Romanyuk, Nataliya D" sort="Romanyuk, Nataliya D" uniqKey="Romanyuk N" first="Nataliya D" last="Romanyuk">Nataliya D. Romanyuk</name>
<affiliation>
<nlm:affiliation>Plant Science Institute, Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rigden, Daniel J" sort="Rigden, Daniel J" uniqKey="Rigden D" first="Daniel J" last="Rigden">Daniel J. Rigden</name>
</author>
<author>
<name sortKey="Vatamaniuk, Olena K" sort="Vatamaniuk, Olena K" uniqKey="Vatamaniuk O" first="Olena K" last="Vatamaniuk">Olena K. Vatamaniuk</name>
</author>
<author>
<name sortKey="Lang, Albert" sort="Lang, Albert" uniqKey="Lang A" first="Albert" last="Lang">Albert Lang</name>
</author>
<author>
<name sortKey="Cahoon, Rebecca E" sort="Cahoon, Rebecca E" uniqKey="Cahoon R" first="Rebecca E" last="Cahoon">Rebecca E. Cahoon</name>
</author>
<author>
<name sortKey="Jez, Joseph M" sort="Jez, Joseph M" uniqKey="Jez J" first="Joseph M" last="Jez">Joseph M. Jez</name>
</author>
<author>
<name sortKey="Rea, Philip A" sort="Rea, Philip A" uniqKey="Rea P" first="Philip A" last="Rea">Philip A. Rea</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2006">2006</date>
<idno type="RBID">pubmed:16714405</idno>
<idno type="pmid">16714405</idno>
<idno type="doi">10.1104/pp.106.082131</idno>
<idno type="pmc">PMC1489916</idno>
<idno type="wicri:Area/Main/Corpus">000321</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000321</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Mutagenic definition of a papain-like catalytic triad, sufficiency of the N-terminal domain for single-site core catalytic enzyme acylation, and C-terminal domain for augmentative metal activation of a eukaryotic phytochelatin synthase.</title>
<author>
<name sortKey="Romanyuk, Nataliya D" sort="Romanyuk, Nataliya D" uniqKey="Romanyuk N" first="Nataliya D" last="Romanyuk">Nataliya D. Romanyuk</name>
<affiliation>
<nlm:affiliation>Plant Science Institute, Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rigden, Daniel J" sort="Rigden, Daniel J" uniqKey="Rigden D" first="Daniel J" last="Rigden">Daniel J. Rigden</name>
</author>
<author>
<name sortKey="Vatamaniuk, Olena K" sort="Vatamaniuk, Olena K" uniqKey="Vatamaniuk O" first="Olena K" last="Vatamaniuk">Olena K. Vatamaniuk</name>
</author>
<author>
<name sortKey="Lang, Albert" sort="Lang, Albert" uniqKey="Lang A" first="Albert" last="Lang">Albert Lang</name>
</author>
<author>
<name sortKey="Cahoon, Rebecca E" sort="Cahoon, Rebecca E" uniqKey="Cahoon R" first="Rebecca E" last="Cahoon">Rebecca E. Cahoon</name>
</author>
<author>
<name sortKey="Jez, Joseph M" sort="Jez, Joseph M" uniqKey="Jez J" first="Joseph M" last="Jez">Joseph M. Jez</name>
</author>
<author>
<name sortKey="Rea, Philip A" sort="Rea, Philip A" uniqKey="Rea P" first="Philip A" last="Rea">Philip A. Rea</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="ISSN">0032-0889</idno>
<imprint>
<date when="2006" type="published">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acylation (MeSH)</term>
<term>Amino Acid Sequence (MeSH)</term>
<term>Aminoacyltransferases (chemistry)</term>
<term>Aminoacyltransferases (metabolism)</term>
<term>Arabidopsis (enzymology)</term>
<term>Aspartic Acid (physiology)</term>
<term>Binding Sites (MeSH)</term>
<term>Cadmium (physiology)</term>
<term>Catalysis (MeSH)</term>
<term>Cysteine (physiology)</term>
<term>Enzyme Activation (MeSH)</term>
<term>Histidine (physiology)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Mutagenesis, Site-Directed (MeSH)</term>
<term>Papain (chemistry)</term>
<term>Protein Structure, Tertiary (MeSH)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Aminoacyltransferases</term>
<term>Papain</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Aminoacyltransferases</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Arabidopsis</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Aspartic Acid</term>
<term>Cadmium</term>
<term>Cysteine</term>
<term>Histidine</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Acylation</term>
<term>Amino Acid Sequence</term>
<term>Binding Sites</term>
<term>Catalysis</term>
<term>Enzyme Activation</term>
<term>Molecular Sequence Data</term>
<term>Mutagenesis, Site-Directed</term>
<term>Protein Structure, Tertiary</term>
<term>Sequence Homology, Amino Acid</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Phytochelatin (PC) synthases are gamma-glutamylcysteine (gamma-Glu-Cys) dipeptidyl transpeptidases that catalyze the synthesis of heavy metal-binding PCs, (gamma-Glu-Cys)nGly polymers, from glutathione (GSH) and/or shorter chain PCs. Here it is shown through investigations of the enzyme from Arabidopsis (Arabidopsis thaliana; AtPCS1) that, although the N-terminal half of the protein, alone, is sufficient for core catalysis through the formation of a single-site enzyme acyl intermediate, it is not sufficient for acylation at a second site and augmentative stimulation by free Cd2+. A purified N-terminally hexahistidinyl-tagged AtPCS1 truncate containing only the first 221 N-terminal amino acid residues of the enzyme (HIS-AtPCS1_221tr) is competent in the synthesis of PCs from GSH in media containing Cd2+ or the synthesis of S-methyl-PCs from S-methylglutathione in media devoid of heavy metal ions. However, whereas its full-length hexahistidinyl-tagged equivalent, HIS-AtPCS1, undergoes gamma-Glu-Cys acylation at two sites during the Cd2+-dependent synthesis of PCs from GSH and is stimulated by free Cd2+ when synthesizing S-methyl-PCs from S-methylglutathione, HIS-AtPCS1_221tr undergoes gamma-Glu-Cys acylation at only one site when GSH is the substrate and is not directly stimulated, but instead inhibited, by free Cd2+ when S-methylglutathione is the substrate. Through the application of sequence search algorithms capable of detecting distant homologies, work we reported briefly before but not in its entirety, it has been determined that the N-terminal half of AtPCS1 and its equivalents from other sources have the hallmarks of a papain-like, Clan CA Cys protease. Whereas the fold assignment deduced from these analyses, which substantiates and is substantiated by the recent determination of the crystal structure of a distant prokaryotic PC synthase homolog from the cyanobacterium Nostoc, is capable of explaining the strict requirement for a conserved Cys residue, Cys-56 in the case of AtPCS1, for formation of the biosynthetically competent gamma-Glu-Cys enzyme acyl intermediate, the primary data from experiments directed at determining whether the other two residues, His-162 and Asp-180 of the putative papain-like catalytic triad of AtPCS1, are essential for catalysis have yet to be presented. This shortfall in our basic understanding of AtPCS1 is addressed here by the results of systematic site-directed mutagenesis studies that demonstrate that not only Cys-56 but also His-162 and Asp-180 are indeed required for net PC synthesis. It is therefore established experimentally that AtPCS1 and, by implication, other eukaryotic PC synthases are papain Cys protease superfamily members but ones, unlike their prokaryotic counterparts, which, in addition to having a papain-like N-terminal catalytic domain that undergoes primary gamma-Glu-Cys acylation, contain an auxiliary metal-sensing C-terminal domain that undergoes secondary gamma-Glu-Cys acylation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16714405</PMID>
<DateCompleted>
<Year>2006</Year>
<Month>11</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0032-0889</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>141</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2006</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Mutagenic definition of a papain-like catalytic triad, sufficiency of the N-terminal domain for single-site core catalytic enzyme acylation, and C-terminal domain for augmentative metal activation of a eukaryotic phytochelatin synthase.</ArticleTitle>
<Pagination>
<MedlinePgn>858-69</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Phytochelatin (PC) synthases are gamma-glutamylcysteine (gamma-Glu-Cys) dipeptidyl transpeptidases that catalyze the synthesis of heavy metal-binding PCs, (gamma-Glu-Cys)nGly polymers, from glutathione (GSH) and/or shorter chain PCs. Here it is shown through investigations of the enzyme from Arabidopsis (Arabidopsis thaliana; AtPCS1) that, although the N-terminal half of the protein, alone, is sufficient for core catalysis through the formation of a single-site enzyme acyl intermediate, it is not sufficient for acylation at a second site and augmentative stimulation by free Cd2+. A purified N-terminally hexahistidinyl-tagged AtPCS1 truncate containing only the first 221 N-terminal amino acid residues of the enzyme (HIS-AtPCS1_221tr) is competent in the synthesis of PCs from GSH in media containing Cd2+ or the synthesis of S-methyl-PCs from S-methylglutathione in media devoid of heavy metal ions. However, whereas its full-length hexahistidinyl-tagged equivalent, HIS-AtPCS1, undergoes gamma-Glu-Cys acylation at two sites during the Cd2+-dependent synthesis of PCs from GSH and is stimulated by free Cd2+ when synthesizing S-methyl-PCs from S-methylglutathione, HIS-AtPCS1_221tr undergoes gamma-Glu-Cys acylation at only one site when GSH is the substrate and is not directly stimulated, but instead inhibited, by free Cd2+ when S-methylglutathione is the substrate. Through the application of sequence search algorithms capable of detecting distant homologies, work we reported briefly before but not in its entirety, it has been determined that the N-terminal half of AtPCS1 and its equivalents from other sources have the hallmarks of a papain-like, Clan CA Cys protease. Whereas the fold assignment deduced from these analyses, which substantiates and is substantiated by the recent determination of the crystal structure of a distant prokaryotic PC synthase homolog from the cyanobacterium Nostoc, is capable of explaining the strict requirement for a conserved Cys residue, Cys-56 in the case of AtPCS1, for formation of the biosynthetically competent gamma-Glu-Cys enzyme acyl intermediate, the primary data from experiments directed at determining whether the other two residues, His-162 and Asp-180 of the putative papain-like catalytic triad of AtPCS1, are essential for catalysis have yet to be presented. This shortfall in our basic understanding of AtPCS1 is addressed here by the results of systematic site-directed mutagenesis studies that demonstrate that not only Cys-56 but also His-162 and Asp-180 are indeed required for net PC synthesis. It is therefore established experimentally that AtPCS1 and, by implication, other eukaryotic PC synthases are papain Cys protease superfamily members but ones, unlike their prokaryotic counterparts, which, in addition to having a papain-like N-terminal catalytic domain that undergoes primary gamma-Glu-Cys acylation, contain an auxiliary metal-sensing C-terminal domain that undergoes secondary gamma-Glu-Cys acylation.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Romanyuk</LastName>
<ForeName>Nataliya D</ForeName>
<Initials>ND</Initials>
<AffiliationInfo>
<Affiliation>Plant Science Institute, Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rigden</LastName>
<ForeName>Daniel J</ForeName>
<Initials>DJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Vatamaniuk</LastName>
<ForeName>Olena K</ForeName>
<Initials>OK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lang</LastName>
<ForeName>Albert</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cahoon</LastName>
<ForeName>Rebecca E</ForeName>
<Initials>RE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jez</LastName>
<ForeName>Joseph M</ForeName>
<Initials>JM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rea</LastName>
<ForeName>Philip A</ForeName>
<Initials>PA</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2006</Year>
<Month>05</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>00BH33GNGH</RegistryNumber>
<NameOfSubstance UI="D002104">Cadmium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>30KYC7MIAI</RegistryNumber>
<NameOfSubstance UI="D001224">Aspartic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>4QD397987E</RegistryNumber>
<NameOfSubstance UI="D006639">Histidine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.3.2.-</RegistryNumber>
<NameOfSubstance UI="D019881">Aminoacyltransferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.3.2.15</RegistryNumber>
<NameOfSubstance UI="C093784">glutathione gamma-glutamylcysteinyltransferase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.22.2</RegistryNumber>
<NameOfSubstance UI="D010206">Papain</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K848JZ4886</RegistryNumber>
<NameOfSubstance UI="D003545">Cysteine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000215" MajorTopicYN="N">Acylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019881" MajorTopicYN="N">Aminoacyltransferases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001224" MajorTopicYN="N">Aspartic Acid</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002104" MajorTopicYN="N">Cadmium</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002384" MajorTopicYN="N">Catalysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003545" MajorTopicYN="N">Cysteine</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004789" MajorTopicYN="N">Enzyme Activation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006639" MajorTopicYN="N">Histidine</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016297" MajorTopicYN="N">Mutagenesis, Site-Directed</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010206" MajorTopicYN="N">Papain</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2006</Year>
<Month>5</Month>
<Day>23</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>11</Month>
<Day>15</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2006</Year>
<Month>5</Month>
<Day>23</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16714405</ArticleId>
<ArticleId IdType="pii">pp.106.082131</ArticleId>
<ArticleId IdType="doi">10.1104/pp.106.082131</ArticleId>
<ArticleId IdType="pmc">PMC1489916</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Jan 17;103(3):507-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16407124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2000 Sep 8;302(1):205-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10964570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Jan 7;94(1):42-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8990158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem. 2001 May;382(5):727-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11517925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 May 21;279(21):22449-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15004013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1989 Sep;86(18):6838-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16594069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1999 Sep 17;292(2):195-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10493868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1999 Jun;11(6):1153-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10368185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Oct 6;275(40):31451-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10807919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2001 Feb;10(2):352-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11266621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Dec 27;102(52):18848-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16339904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2004 Dec;65(24):3179-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15561184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1999 Jun 15;18(12):3325-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10369673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1991 Feb 25;266(6):3387-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1671673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Jan 1;32(Database issue):D160-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14681384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2005 Sep;222(1):181-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15809863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Mar 12;315(3):751-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14975765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Sep;136(1):2463-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15375203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2000 Feb;9(2):232-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10716175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1991 Sep 17;30(37):8924-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1892809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2004 Feb 12;20(3):426-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14960472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2002;53:159-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12221971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2001 Jul;268(13):3640-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11432729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1976 May 7;72:248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">942051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Apr 9;279(15):14686-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14729665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):7110-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10359847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Feb 10;270(6):2630-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7852329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biotechnol. 2002 Feb;20(2):61-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11814595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Jun 15;276(24):20817-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11313333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2003 Feb;62(3):423-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12620355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 1999 Apr;15(4):305-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10320398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Sep 1;25(17):3389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2001 Aug;17(8):750-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11524381</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MetalBindProtPlantV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000321 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000321 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MetalBindProtPlantV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:16714405
   |texte=   Mutagenic definition of a papain-like catalytic triad, sufficiency of the N-terminal domain for single-site core catalytic enzyme acylation, and C-terminal domain for augmentative metal activation of a eukaryotic phytochelatin synthase.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:16714405" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MetalBindProtPlantV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:03:59 2020. Site generation: Fri Nov 20 11:04:44 2020