Serveur d'exploration sur les protéines de liaison chez les plantes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Metal binding affinities of Arabidopsis zinc and copper transporters: selectivities match the relative, but not the absolute, affinities of their amino-terminal domains.

Identifieur interne : 000238 ( Main/Corpus ); précédent : 000237; suivant : 000239

Metal binding affinities of Arabidopsis zinc and copper transporters: selectivities match the relative, but not the absolute, affinities of their amino-terminal domains.

Auteurs : Matthias Zimmermann ; Oliver Clarke ; Jacqui M. Gulbis ; David W. Keizer ; Renee S. Jarvis ; Christopher S. Cobbett ; Mark G. Hinds ; Zhiguang Xiao ; Anthony G. Wedd

Source :

RBID : pubmed:19883117

English descriptors

Abstract

HMA2, HMA4, and HMA7 are three of the eight heavy metal transporting P(1B)-type ATPases in the simple plant Arabidopsis thaliana. The first two transport Zn(2+), and the third transports Cu(+). Each protein contains soluble N-terminal metal-binding domains (MBDs) that are essential for metal transport. While the MBD of HMA7 features a CxxC sequence motif characteristic of Cu(I) binding sites, those of HMA2 and HMA4 contain a CCxxE motif, unique for plant Zn(2+)-ATPases. The three MBDs HMA2n (residues 1-79), HMA4n (residues 1-96), and HMA7n (residues 56-127) and an HMA7/4n chimera were expressed in Escherichia coli. The chimera features the ICCTSE motif from HMA4n inserted in place of the native MTCAAC motif of HMA7n. Binding affinities for Zn(II) and Cu(I) of each MBD were determined by ligand competition with a number of chromophoric probes. The challenges of using these probes reliably were evaluated, and the relative affinities of the MBDs were verified by independent cross-checks. The affinities of HMA2n and HMA4n for Zn(II) are higher than that of HMA7n by a factor of 20-30, but the relative affinities for Cu(I) are inverted by a factor of 30-50. These relativities are consistent with their respective roles in metal selection and transportation. Chimera HMA7/4n binds Cu(I) with an affinity between those of HMA4n and HMA7n but binds Zn(II) more weakly than either parent protein does. The four MBDs bind Cu(I) more strongly than Zn(II) by factors of >10(6). It is apparent that the individual MBDs are not able to overcome the large thermodynamic preference for Cu(+) over Zn(2+). This information highlights the potential toxicity of Cu(+) in vivo and why copper sensor proteins are approximately 6 orders of magnitude more sensitive than zinc sensor proteins. Metal speciation must be controlled by multiple factors, including thermodynamics (affinity), kinetics (including protein-protein interactions), and compartmentalization. The structure of Zn(II)-bound HMA4n defined by NMR confirmed the predicted ferredoxin betaalphabetabetaalphabeta fold. A single Zn atom was modeled onto a metal-binding site with protein ligands comprising the two thiolates and the carboxylate of the CCxxE motif. The observed (113)Cd chemical shift in [(113)Cd]HMA4n was consistent with a Cd(II)S(2)OX (X = O or N) coordination sphere. The Zn(II) form of the Cu(I) transporter HMA7n is a monomer in solution but crystallized as a polymeric chain [(Zn(II)-HMA7n)(m)]. Each Zn(II) ion occupied a distorted tetrahedral site formed from two Cys ligands of the CxxC motif of one HMA7n molecule and the amino N and carbonyl O atoms of the N-terminal methionine of another.

DOI: 10.1021/bi901573b
PubMed: 19883117

Links to Exploration step

pubmed:19883117

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Metal binding affinities of Arabidopsis zinc and copper transporters: selectivities match the relative, but not the absolute, affinities of their amino-terminal domains.</title>
<author>
<name sortKey="Zimmermann, Matthias" sort="Zimmermann, Matthias" uniqKey="Zimmermann M" first="Matthias" last="Zimmermann">Matthias Zimmermann</name>
<affiliation>
<nlm:affiliation>School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Clarke, Oliver" sort="Clarke, Oliver" uniqKey="Clarke O" first="Oliver" last="Clarke">Oliver Clarke</name>
</author>
<author>
<name sortKey="Gulbis, Jacqui M" sort="Gulbis, Jacqui M" uniqKey="Gulbis J" first="Jacqui M" last="Gulbis">Jacqui M. Gulbis</name>
</author>
<author>
<name sortKey="Keizer, David W" sort="Keizer, David W" uniqKey="Keizer D" first="David W" last="Keizer">David W. Keizer</name>
</author>
<author>
<name sortKey="Jarvis, Renee S" sort="Jarvis, Renee S" uniqKey="Jarvis R" first="Renee S" last="Jarvis">Renee S. Jarvis</name>
</author>
<author>
<name sortKey="Cobbett, Christopher S" sort="Cobbett, Christopher S" uniqKey="Cobbett C" first="Christopher S" last="Cobbett">Christopher S. Cobbett</name>
</author>
<author>
<name sortKey="Hinds, Mark G" sort="Hinds, Mark G" uniqKey="Hinds M" first="Mark G" last="Hinds">Mark G. Hinds</name>
</author>
<author>
<name sortKey="Xiao, Zhiguang" sort="Xiao, Zhiguang" uniqKey="Xiao Z" first="Zhiguang" last="Xiao">Zhiguang Xiao</name>
</author>
<author>
<name sortKey="Wedd, Anthony G" sort="Wedd, Anthony G" uniqKey="Wedd A" first="Anthony G" last="Wedd">Anthony G. Wedd</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19883117</idno>
<idno type="pmid">19883117</idno>
<idno type="doi">10.1021/bi901573b</idno>
<idno type="wicri:Area/Main/Corpus">000238</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000238</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Metal binding affinities of Arabidopsis zinc and copper transporters: selectivities match the relative, but not the absolute, affinities of their amino-terminal domains.</title>
<author>
<name sortKey="Zimmermann, Matthias" sort="Zimmermann, Matthias" uniqKey="Zimmermann M" first="Matthias" last="Zimmermann">Matthias Zimmermann</name>
<affiliation>
<nlm:affiliation>School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Clarke, Oliver" sort="Clarke, Oliver" uniqKey="Clarke O" first="Oliver" last="Clarke">Oliver Clarke</name>
</author>
<author>
<name sortKey="Gulbis, Jacqui M" sort="Gulbis, Jacqui M" uniqKey="Gulbis J" first="Jacqui M" last="Gulbis">Jacqui M. Gulbis</name>
</author>
<author>
<name sortKey="Keizer, David W" sort="Keizer, David W" uniqKey="Keizer D" first="David W" last="Keizer">David W. Keizer</name>
</author>
<author>
<name sortKey="Jarvis, Renee S" sort="Jarvis, Renee S" uniqKey="Jarvis R" first="Renee S" last="Jarvis">Renee S. Jarvis</name>
</author>
<author>
<name sortKey="Cobbett, Christopher S" sort="Cobbett, Christopher S" uniqKey="Cobbett C" first="Christopher S" last="Cobbett">Christopher S. Cobbett</name>
</author>
<author>
<name sortKey="Hinds, Mark G" sort="Hinds, Mark G" uniqKey="Hinds M" first="Mark G" last="Hinds">Mark G. Hinds</name>
</author>
<author>
<name sortKey="Xiao, Zhiguang" sort="Xiao, Zhiguang" uniqKey="Xiao Z" first="Zhiguang" last="Xiao">Zhiguang Xiao</name>
</author>
<author>
<name sortKey="Wedd, Anthony G" sort="Wedd, Anthony G" uniqKey="Wedd A" first="Anthony G" last="Wedd">Anthony G. Wedd</name>
</author>
</analytic>
<series>
<title level="j">Biochemistry</title>
<idno type="eISSN">1520-4995</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adenosine Triphosphatases (genetics)</term>
<term>Adenosine Triphosphatases (isolation & purification)</term>
<term>Adenosine Triphosphatases (metabolism)</term>
<term>Arabidopsis Proteins (genetics)</term>
<term>Arabidopsis Proteins (isolation & purification)</term>
<term>Arabidopsis Proteins (metabolism)</term>
<term>Carrier Proteins (genetics)</term>
<term>Carrier Proteins (isolation & purification)</term>
<term>Carrier Proteins (metabolism)</term>
<term>Cation Transport Proteins (genetics)</term>
<term>Cation Transport Proteins (isolation & purification)</term>
<term>Cation Transport Proteins (metabolism)</term>
<term>Copper (chemistry)</term>
<term>Copper (metabolism)</term>
<term>Crystallography, X-Ray (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Magnetic Resonance Spectroscopy (MeSH)</term>
<term>Protein Binding (genetics)</term>
<term>Protein Structure, Tertiary (genetics)</term>
<term>Zinc (chemistry)</term>
<term>Zinc (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Copper</term>
<term>Zinc</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Adenosine Triphosphatases</term>
<term>Arabidopsis Proteins</term>
<term>Carrier Proteins</term>
<term>Cation Transport Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="isolation & purification" xml:lang="en">
<term>Adenosine Triphosphatases</term>
<term>Arabidopsis Proteins</term>
<term>Carrier Proteins</term>
<term>Cation Transport Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Adenosine Triphosphatases</term>
<term>Arabidopsis Proteins</term>
<term>Carrier Proteins</term>
<term>Cation Transport Proteins</term>
<term>Copper</term>
<term>Zinc</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Protein Binding</term>
<term>Protein Structure, Tertiary</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Crystallography, X-Ray</term>
<term>Gene Expression Regulation, Plant</term>
<term>Magnetic Resonance Spectroscopy</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">HMA2, HMA4, and HMA7 are three of the eight heavy metal transporting P(1B)-type ATPases in the simple plant Arabidopsis thaliana. The first two transport Zn(2+), and the third transports Cu(+). Each protein contains soluble N-terminal metal-binding domains (MBDs) that are essential for metal transport. While the MBD of HMA7 features a CxxC sequence motif characteristic of Cu(I) binding sites, those of HMA2 and HMA4 contain a CCxxE motif, unique for plant Zn(2+)-ATPases. The three MBDs HMA2n (residues 1-79), HMA4n (residues 1-96), and HMA7n (residues 56-127) and an HMA7/4n chimera were expressed in Escherichia coli. The chimera features the ICCTSE motif from HMA4n inserted in place of the native MTCAAC motif of HMA7n. Binding affinities for Zn(II) and Cu(I) of each MBD were determined by ligand competition with a number of chromophoric probes. The challenges of using these probes reliably were evaluated, and the relative affinities of the MBDs were verified by independent cross-checks. The affinities of HMA2n and HMA4n for Zn(II) are higher than that of HMA7n by a factor of 20-30, but the relative affinities for Cu(I) are inverted by a factor of 30-50. These relativities are consistent with their respective roles in metal selection and transportation. Chimera HMA7/4n binds Cu(I) with an affinity between those of HMA4n and HMA7n but binds Zn(II) more weakly than either parent protein does. The four MBDs bind Cu(I) more strongly than Zn(II) by factors of >10(6). It is apparent that the individual MBDs are not able to overcome the large thermodynamic preference for Cu(+) over Zn(2+). This information highlights the potential toxicity of Cu(+) in vivo and why copper sensor proteins are approximately 6 orders of magnitude more sensitive than zinc sensor proteins. Metal speciation must be controlled by multiple factors, including thermodynamics (affinity), kinetics (including protein-protein interactions), and compartmentalization. The structure of Zn(II)-bound HMA4n defined by NMR confirmed the predicted ferredoxin betaalphabetabetaalphabeta fold. A single Zn atom was modeled onto a metal-binding site with protein ligands comprising the two thiolates and the carboxylate of the CCxxE motif. The observed (113)Cd chemical shift in [(113)Cd]HMA4n was consistent with a Cd(II)S(2)OX (X = O or N) coordination sphere. The Zn(II) form of the Cu(I) transporter HMA7n is a monomer in solution but crystallized as a polymeric chain [(Zn(II)-HMA7n)(m)]. Each Zn(II) ion occupied a distorted tetrahedral site formed from two Cys ligands of the CxxC motif of one HMA7n molecule and the amino N and carbonyl O atoms of the N-terminal methionine of another.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19883117</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>01</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1520-4995</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>48</Volume>
<Issue>49</Issue>
<PubDate>
<Year>2009</Year>
<Month>Dec</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Biochemistry</Title>
<ISOAbbreviation>Biochemistry</ISOAbbreviation>
</Journal>
<ArticleTitle>Metal binding affinities of Arabidopsis zinc and copper transporters: selectivities match the relative, but not the absolute, affinities of their amino-terminal domains.</ArticleTitle>
<Pagination>
<MedlinePgn>11640-54</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/bi901573b</ELocationID>
<Abstract>
<AbstractText>HMA2, HMA4, and HMA7 are three of the eight heavy metal transporting P(1B)-type ATPases in the simple plant Arabidopsis thaliana. The first two transport Zn(2+), and the third transports Cu(+). Each protein contains soluble N-terminal metal-binding domains (MBDs) that are essential for metal transport. While the MBD of HMA7 features a CxxC sequence motif characteristic of Cu(I) binding sites, those of HMA2 and HMA4 contain a CCxxE motif, unique for plant Zn(2+)-ATPases. The three MBDs HMA2n (residues 1-79), HMA4n (residues 1-96), and HMA7n (residues 56-127) and an HMA7/4n chimera were expressed in Escherichia coli. The chimera features the ICCTSE motif from HMA4n inserted in place of the native MTCAAC motif of HMA7n. Binding affinities for Zn(II) and Cu(I) of each MBD were determined by ligand competition with a number of chromophoric probes. The challenges of using these probes reliably were evaluated, and the relative affinities of the MBDs were verified by independent cross-checks. The affinities of HMA2n and HMA4n for Zn(II) are higher than that of HMA7n by a factor of 20-30, but the relative affinities for Cu(I) are inverted by a factor of 30-50. These relativities are consistent with their respective roles in metal selection and transportation. Chimera HMA7/4n binds Cu(I) with an affinity between those of HMA4n and HMA7n but binds Zn(II) more weakly than either parent protein does. The four MBDs bind Cu(I) more strongly than Zn(II) by factors of >10(6). It is apparent that the individual MBDs are not able to overcome the large thermodynamic preference for Cu(+) over Zn(2+). This information highlights the potential toxicity of Cu(+) in vivo and why copper sensor proteins are approximately 6 orders of magnitude more sensitive than zinc sensor proteins. Metal speciation must be controlled by multiple factors, including thermodynamics (affinity), kinetics (including protein-protein interactions), and compartmentalization. The structure of Zn(II)-bound HMA4n defined by NMR confirmed the predicted ferredoxin betaalphabetabetaalphabeta fold. A single Zn atom was modeled onto a metal-binding site with protein ligands comprising the two thiolates and the carboxylate of the CCxxE motif. The observed (113)Cd chemical shift in [(113)Cd]HMA4n was consistent with a Cd(II)S(2)OX (X = O or N) coordination sphere. The Zn(II) form of the Cu(I) transporter HMA7n is a monomer in solution but crystallized as a polymeric chain [(Zn(II)-HMA7n)(m)]. Each Zn(II) ion occupied a distorted tetrahedral site formed from two Cys ligands of the CxxC motif of one HMA7n molecule and the amino N and carbonyl O atoms of the N-terminal methionine of another.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zimmermann</LastName>
<ForeName>Matthias</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Clarke</LastName>
<ForeName>Oliver</ForeName>
<Initials>O</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gulbis</LastName>
<ForeName>Jacqui M</ForeName>
<Initials>JM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Keizer</LastName>
<ForeName>David W</ForeName>
<Initials>DW</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jarvis</LastName>
<ForeName>Renee S</ForeName>
<Initials>RS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cobbett</LastName>
<ForeName>Christopher S</ForeName>
<Initials>CS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hinds</LastName>
<ForeName>Mark G</ForeName>
<Initials>MG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Xiao</LastName>
<ForeName>Zhiguang</ForeName>
<Initials>Z</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wedd</LastName>
<ForeName>Anthony G</ForeName>
<Initials>AG</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>PDB</DataBankName>
<AccessionNumberList>
<AccessionNumber>1FEE</AccessionNumber>
<AccessionNumber>1MWZ</AccessionNumber>
<AccessionNumber>2AJ1</AccessionNumber>
<AccessionNumber>2KKH</AccessionNumber>
<AccessionNumber>3DXS</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Biochemistry</MedlineTA>
<NlmUniqueID>0370623</NlmUniqueID>
<ISSNLinking>0006-2960</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029681">Arabidopsis Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002352">Carrier Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D027682">Cation Transport Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C017800">zinc-binding protein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>789U1901C5</RegistryNumber>
<NameOfSubstance UI="D003300">Copper</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.1.-</RegistryNumber>
<NameOfSubstance UI="D000251">Adenosine Triphosphatases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.1.-</RegistryNumber>
<NameOfSubstance UI="C494967">HMA2 protein, Arabidopsis</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.1.3</RegistryNumber>
<NameOfSubstance UI="C477864">HMA4 protein, Arabidopsis</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>J41CSQ7QDS</RegistryNumber>
<NameOfSubstance UI="D015032">Zinc</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000251" MajorTopicYN="N">Adenosine Triphosphatases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029681" MajorTopicYN="N">Arabidopsis Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002352" MajorTopicYN="N">Carrier Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D027682" MajorTopicYN="N">Cation Transport Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003300" MajorTopicYN="N">Copper</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018360" MajorTopicYN="N">Crystallography, X-Ray</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009682" MajorTopicYN="N">Magnetic Resonance Spectroscopy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015032" MajorTopicYN="N">Zinc</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>11</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>11</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>1</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19883117</ArticleId>
<ArticleId IdType="doi">10.1021/bi901573b</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MetalBindProtPlantV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000238 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000238 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MetalBindProtPlantV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:19883117
   |texte=   Metal binding affinities of Arabidopsis zinc and copper transporters: selectivities match the relative, but not the absolute, affinities of their amino-terminal domains.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:19883117" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MetalBindProtPlantV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:03:59 2020. Site generation: Fri Nov 20 11:04:44 2020