Serveur d'exploration sur les protéines de liaison chez les plantes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genome-wide analysis of SAUR gene family in Solanaceae species.

Identifieur interne : 000191 ( Main/Corpus ); précédent : 000190; suivant : 000192

Genome-wide analysis of SAUR gene family in Solanaceae species.

Auteurs : Jian Wu ; Songyu Liu ; Yanjun He ; Xiaoyan Guan ; Xiangfei Zhu ; Lin Cheng ; Jie Wang ; Gang Lu

Source :

RBID : pubmed:22903030

English descriptors

Abstract

The plant hormone auxin plays a vital role in regulating many aspects of plant growth and development. Small auxin up-regulated RNAs (SAURs) are primary auxin response genes hypothesized to be involved in auxin signaling pathway, but their functions remain unclear. Here, a genome-wide search for SAUR gene homologues in Solanaceae species identified 99 and 134 members of SAUR gene family from tomato and potato, respectively. Phylogenetic analysis indicated that the SAUR proteins from Arabidopsis, rice, sorghum, tomato and potato were divided into four major groups with 16 subgroups. Among them, 25 histidine-rich SAURs genes with metal-binding characteristics were found in Arabidopsis, sorghum and Solanaceae species, but not in rice. Using tomato as a model, a comprehensive overview of SAUR gene family is presented, including the gene structures, phylogeny and chromosome locations. Quantitative real-time PCR analysis indicated that 11 randomly selected SlSAUR genes in tomato could be expressed at least in one of the tomato organs/tissues tested. However, different SlSAUR genes displayed distinctive expression levels. SlSAUR16 and SlSAUR71 exhibited highly tissue-specific expression patterns. Almost all of the detected SlSAURs showed an accumulating pattern of mRNA along tomato flower and fruit development. Some of them displayed differential response to exogenous IAA treatment. The abiotic (cold, salt and drought) stresses significantly modified transcript levels of SlSAURs genes. Most of them were down-regulated in response to abiotic stresses (drought, heat and salinity), but SlSAUR58, as a histidine-rich SAUR gene, was up-regulated after salt treatment, indicating that it may play a specific role in the salt signaling transduction pathway. Our comparative analysis provides some basic genomic information for the SAUR genes in the Solanaceae species and will pave the way for deciphering their function during plant development.

DOI: 10.1016/j.gene.2012.08.002
PubMed: 22903030

Links to Exploration step

pubmed:22903030

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genome-wide analysis of SAUR gene family in Solanaceae species.</title>
<author>
<name sortKey="Wu, Jian" sort="Wu, Jian" uniqKey="Wu J" first="Jian" last="Wu">Jian Wu</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang University, Hangzhou 310058, PR China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liu, Songyu" sort="Liu, Songyu" uniqKey="Liu S" first="Songyu" last="Liu">Songyu Liu</name>
</author>
<author>
<name sortKey="He, Yanjun" sort="He, Yanjun" uniqKey="He Y" first="Yanjun" last="He">Yanjun He</name>
</author>
<author>
<name sortKey="Guan, Xiaoyan" sort="Guan, Xiaoyan" uniqKey="Guan X" first="Xiaoyan" last="Guan">Xiaoyan Guan</name>
</author>
<author>
<name sortKey="Zhu, Xiangfei" sort="Zhu, Xiangfei" uniqKey="Zhu X" first="Xiangfei" last="Zhu">Xiangfei Zhu</name>
</author>
<author>
<name sortKey="Cheng, Lin" sort="Cheng, Lin" uniqKey="Cheng L" first="Lin" last="Cheng">Lin Cheng</name>
</author>
<author>
<name sortKey="Wang, Jie" sort="Wang, Jie" uniqKey="Wang J" first="Jie" last="Wang">Jie Wang</name>
</author>
<author>
<name sortKey="Lu, Gang" sort="Lu, Gang" uniqKey="Lu G" first="Gang" last="Lu">Gang Lu</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22903030</idno>
<idno type="pmid">22903030</idno>
<idno type="doi">10.1016/j.gene.2012.08.002</idno>
<idno type="wicri:Area/Main/Corpus">000191</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000191</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Genome-wide analysis of SAUR gene family in Solanaceae species.</title>
<author>
<name sortKey="Wu, Jian" sort="Wu, Jian" uniqKey="Wu J" first="Jian" last="Wu">Jian Wu</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang University, Hangzhou 310058, PR China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liu, Songyu" sort="Liu, Songyu" uniqKey="Liu S" first="Songyu" last="Liu">Songyu Liu</name>
</author>
<author>
<name sortKey="He, Yanjun" sort="He, Yanjun" uniqKey="He Y" first="Yanjun" last="He">Yanjun He</name>
</author>
<author>
<name sortKey="Guan, Xiaoyan" sort="Guan, Xiaoyan" uniqKey="Guan X" first="Xiaoyan" last="Guan">Xiaoyan Guan</name>
</author>
<author>
<name sortKey="Zhu, Xiangfei" sort="Zhu, Xiangfei" uniqKey="Zhu X" first="Xiangfei" last="Zhu">Xiangfei Zhu</name>
</author>
<author>
<name sortKey="Cheng, Lin" sort="Cheng, Lin" uniqKey="Cheng L" first="Lin" last="Cheng">Lin Cheng</name>
</author>
<author>
<name sortKey="Wang, Jie" sort="Wang, Jie" uniqKey="Wang J" first="Jie" last="Wang">Jie Wang</name>
</author>
<author>
<name sortKey="Lu, Gang" sort="Lu, Gang" uniqKey="Lu G" first="Gang" last="Lu">Gang Lu</name>
</author>
</analytic>
<series>
<title level="j">Gene</title>
<idno type="eISSN">1879-0038</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Motifs (MeSH)</term>
<term>Amino Acid Sequence (MeSH)</term>
<term>Chromosome Mapping (MeSH)</term>
<term>Conserved Sequence (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Genome, Plant (MeSH)</term>
<term>Indoleacetic Acids (metabolism)</term>
<term>Lycopersicon esculentum (genetics)</term>
<term>Lycopersicon esculentum (metabolism)</term>
<term>Multigene Family (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Growth Regulators (metabolism)</term>
<term>Plant Proteins (chemistry)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Promoter Regions, Genetic (MeSH)</term>
<term>Solanaceae (genetics)</term>
<term>Solanaceae (metabolism)</term>
<term>Transcriptome (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Indoleacetic Acids</term>
<term>Plant Growth Regulators</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Lycopersicon esculentum</term>
<term>Solanaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Lycopersicon esculentum</term>
<term>Solanaceae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Motifs</term>
<term>Amino Acid Sequence</term>
<term>Chromosome Mapping</term>
<term>Conserved Sequence</term>
<term>Genes, Plant</term>
<term>Genome, Plant</term>
<term>Multigene Family</term>
<term>Phylogeny</term>
<term>Promoter Regions, Genetic</term>
<term>Transcriptome</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The plant hormone auxin plays a vital role in regulating many aspects of plant growth and development. Small auxin up-regulated RNAs (SAURs) are primary auxin response genes hypothesized to be involved in auxin signaling pathway, but their functions remain unclear. Here, a genome-wide search for SAUR gene homologues in Solanaceae species identified 99 and 134 members of SAUR gene family from tomato and potato, respectively. Phylogenetic analysis indicated that the SAUR proteins from Arabidopsis, rice, sorghum, tomato and potato were divided into four major groups with 16 subgroups. Among them, 25 histidine-rich SAURs genes with metal-binding characteristics were found in Arabidopsis, sorghum and Solanaceae species, but not in rice. Using tomato as a model, a comprehensive overview of SAUR gene family is presented, including the gene structures, phylogeny and chromosome locations. Quantitative real-time PCR analysis indicated that 11 randomly selected SlSAUR genes in tomato could be expressed at least in one of the tomato organs/tissues tested. However, different SlSAUR genes displayed distinctive expression levels. SlSAUR16 and SlSAUR71 exhibited highly tissue-specific expression patterns. Almost all of the detected SlSAURs showed an accumulating pattern of mRNA along tomato flower and fruit development. Some of them displayed differential response to exogenous IAA treatment. The abiotic (cold, salt and drought) stresses significantly modified transcript levels of SlSAURs genes. Most of them were down-regulated in response to abiotic stresses (drought, heat and salinity), but SlSAUR58, as a histidine-rich SAUR gene, was up-regulated after salt treatment, indicating that it may play a specific role in the salt signaling transduction pathway. Our comparative analysis provides some basic genomic information for the SAUR genes in the Solanaceae species and will pave the way for deciphering their function during plant development.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22903030</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>11</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2012</Year>
<Month>09</Month>
<Day>14</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1879-0038</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>509</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2012</Year>
<Month>Nov</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Gene</Title>
<ISOAbbreviation>Gene</ISOAbbreviation>
</Journal>
<ArticleTitle>Genome-wide analysis of SAUR gene family in Solanaceae species.</ArticleTitle>
<Pagination>
<MedlinePgn>38-50</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.gene.2012.08.002</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S0378-1119(12)00951-1</ELocationID>
<Abstract>
<AbstractText>The plant hormone auxin plays a vital role in regulating many aspects of plant growth and development. Small auxin up-regulated RNAs (SAURs) are primary auxin response genes hypothesized to be involved in auxin signaling pathway, but their functions remain unclear. Here, a genome-wide search for SAUR gene homologues in Solanaceae species identified 99 and 134 members of SAUR gene family from tomato and potato, respectively. Phylogenetic analysis indicated that the SAUR proteins from Arabidopsis, rice, sorghum, tomato and potato were divided into four major groups with 16 subgroups. Among them, 25 histidine-rich SAURs genes with metal-binding characteristics were found in Arabidopsis, sorghum and Solanaceae species, but not in rice. Using tomato as a model, a comprehensive overview of SAUR gene family is presented, including the gene structures, phylogeny and chromosome locations. Quantitative real-time PCR analysis indicated that 11 randomly selected SlSAUR genes in tomato could be expressed at least in one of the tomato organs/tissues tested. However, different SlSAUR genes displayed distinctive expression levels. SlSAUR16 and SlSAUR71 exhibited highly tissue-specific expression patterns. Almost all of the detected SlSAURs showed an accumulating pattern of mRNA along tomato flower and fruit development. Some of them displayed differential response to exogenous IAA treatment. The abiotic (cold, salt and drought) stresses significantly modified transcript levels of SlSAURs genes. Most of them were down-regulated in response to abiotic stresses (drought, heat and salinity), but SlSAUR58, as a histidine-rich SAUR gene, was up-regulated after salt treatment, indicating that it may play a specific role in the salt signaling transduction pathway. Our comparative analysis provides some basic genomic information for the SAUR genes in the Solanaceae species and will pave the way for deciphering their function during plant development.</AbstractText>
<CopyrightInformation>Copyright © 2012 Elsevier B.V. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Jian</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang University, Hangzhou 310058, PR China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Songyu</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>He</LastName>
<ForeName>Yanjun</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Guan</LastName>
<ForeName>Xiaoyan</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhu</LastName>
<ForeName>Xiangfei</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cheng</LastName>
<ForeName>Lin</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Jie</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lu</LastName>
<ForeName>Gang</ForeName>
<Initials>G</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>08</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Gene</MedlineTA>
<NlmUniqueID>7706761</NlmUniqueID>
<ISSNLinking>0378-1119</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007210">Indoleacetic Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010937">Plant Growth Regulators</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020816" MajorTopicYN="N">Amino Acid Motifs</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002874" MajorTopicYN="N">Chromosome Mapping</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017124" MajorTopicYN="N">Conserved Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="Y">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="N">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007210" MajorTopicYN="N">Indoleacetic Acids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018551" MajorTopicYN="N">Lycopersicon esculentum</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005810" MajorTopicYN="Y">Multigene Family</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010937" MajorTopicYN="N">Plant Growth Regulators</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011401" MajorTopicYN="N">Promoter Regions, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019657" MajorTopicYN="N">Solanaceae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="N">Transcriptome</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>02</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2012</Year>
<Month>07</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>08</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>8</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>8</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>12</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22903030</ArticleId>
<ArticleId IdType="pii">S0378-1119(12)00951-1</ArticleId>
<ArticleId IdType="doi">10.1016/j.gene.2012.08.002</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MetalBindProtPlantV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000191 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000191 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MetalBindProtPlantV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:22903030
   |texte=   Genome-wide analysis of SAUR gene family in Solanaceae species.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:22903030" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MetalBindProtPlantV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:03:59 2020. Site generation: Fri Nov 20 11:04:44 2020