Serveur d'exploration sur les protéines de liaison chez les plantes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structural Determinants for Substrate Binding and Catalysis in Triphosphate Tunnel Metalloenzymes.

Identifieur interne : 000122 ( Main/Corpus ); précédent : 000121; suivant : 000123

Structural Determinants for Substrate Binding and Catalysis in Triphosphate Tunnel Metalloenzymes.

Auteurs : Jacobo Martinez ; Vincent Truffault ; Michael Hothorn

Source :

RBID : pubmed:26221030

English descriptors

Abstract

Triphosphate tunnel metalloenzymes (TTMs) are present in all kingdoms of life and catalyze diverse enzymatic reactions such as mRNA capping, the cyclization of adenosine triphosphate, the hydrolysis of thiamine triphosphate, and the synthesis and breakdown of inorganic polyphosphates. TTMs have an unusual tunnel domain fold that harbors substrate- and metal co-factor binding sites. It is presently poorly understood how TTMs specifically sense different triphosphate-containing substrates and how catalysis occurs in the tunnel center. Here we describe substrate-bound structures of inorganic polyphosphatases from Arabidopsis and Escherichia coli, which reveal an unorthodox yet conserved mode of triphosphate and metal co-factor binding. We identify two metal binding sites in these enzymes, with one co-factor involved in substrate coordination and the other in catalysis. Structural comparisons with a substrate- and product-bound mammalian thiamine triphosphatase and with previously reported structures of mRNA capping enzymes, adenylate cyclases, and polyphosphate polymerases suggest that directionality of substrate binding defines TTM catalytic activity. Our work provides insight into the evolution and functional diversification of an ancient enzyme family.

DOI: 10.1074/jbc.M115.674473
PubMed: 26221030
PubMed Central: PMC4641920

Links to Exploration step

pubmed:26221030

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Structural Determinants for Substrate Binding and Catalysis in Triphosphate Tunnel Metalloenzymes.</title>
<author>
<name sortKey="Martinez, Jacobo" sort="Martinez, Jacobo" uniqKey="Martinez J" first="Jacobo" last="Martinez">Jacobo Martinez</name>
<affiliation>
<nlm:affiliation>From the Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland and.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Truffault, Vincent" sort="Truffault, Vincent" uniqKey="Truffault V" first="Vincent" last="Truffault">Vincent Truffault</name>
<affiliation>
<nlm:affiliation>Department of Biochemistry, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hothorn, Michael" sort="Hothorn, Michael" uniqKey="Hothorn M" first="Michael" last="Hothorn">Michael Hothorn</name>
<affiliation>
<nlm:affiliation>From the Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland and michael.hothorn@unige.ch.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26221030</idno>
<idno type="pmid">26221030</idno>
<idno type="doi">10.1074/jbc.M115.674473</idno>
<idno type="pmc">PMC4641920</idno>
<idno type="wicri:Area/Main/Corpus">000122</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000122</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Structural Determinants for Substrate Binding and Catalysis in Triphosphate Tunnel Metalloenzymes.</title>
<author>
<name sortKey="Martinez, Jacobo" sort="Martinez, Jacobo" uniqKey="Martinez J" first="Jacobo" last="Martinez">Jacobo Martinez</name>
<affiliation>
<nlm:affiliation>From the Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland and.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Truffault, Vincent" sort="Truffault, Vincent" uniqKey="Truffault V" first="Vincent" last="Truffault">Vincent Truffault</name>
<affiliation>
<nlm:affiliation>Department of Biochemistry, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hothorn, Michael" sort="Hothorn, Michael" uniqKey="Hothorn M" first="Michael" last="Hothorn">Michael Hothorn</name>
<affiliation>
<nlm:affiliation>From the Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland and michael.hothorn@unige.ch.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="eISSN">1083-351X</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis (enzymology)</term>
<term>Arabidopsis (genetics)</term>
<term>Arabidopsis Proteins (chemistry)</term>
<term>Arabidopsis Proteins (genetics)</term>
<term>Escherichia coli (enzymology)</term>
<term>Escherichia coli (genetics)</term>
<term>Escherichia coli Proteins (chemistry)</term>
<term>Escherichia coli Proteins (genetics)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Inorganic Pyrophosphatase (chemistry)</term>
<term>Inorganic Pyrophosphatase (genetics)</term>
<term>Metalloproteins (chemistry)</term>
<term>Metalloproteins (genetics)</term>
<term>Structural Homology, Protein (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Arabidopsis Proteins</term>
<term>Escherichia coli Proteins</term>
<term>Inorganic Pyrophosphatase</term>
<term>Metalloproteins</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Arabidopsis</term>
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Arabidopsis Proteins</term>
<term>Escherichia coli</term>
<term>Escherichia coli Proteins</term>
<term>Inorganic Pyrophosphatase</term>
<term>Metalloproteins</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Evolution, Molecular</term>
<term>Structural Homology, Protein</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Triphosphate tunnel metalloenzymes (TTMs) are present in all kingdoms of life and catalyze diverse enzymatic reactions such as mRNA capping, the cyclization of adenosine triphosphate, the hydrolysis of thiamine triphosphate, and the synthesis and breakdown of inorganic polyphosphates. TTMs have an unusual tunnel domain fold that harbors substrate- and metal co-factor binding sites. It is presently poorly understood how TTMs specifically sense different triphosphate-containing substrates and how catalysis occurs in the tunnel center. Here we describe substrate-bound structures of inorganic polyphosphatases from Arabidopsis and Escherichia coli, which reveal an unorthodox yet conserved mode of triphosphate and metal co-factor binding. We identify two metal binding sites in these enzymes, with one co-factor involved in substrate coordination and the other in catalysis. Structural comparisons with a substrate- and product-bound mammalian thiamine triphosphatase and with previously reported structures of mRNA capping enzymes, adenylate cyclases, and polyphosphate polymerases suggest that directionality of substrate binding defines TTM catalytic activity. Our work provides insight into the evolution and functional diversification of an ancient enzyme family. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26221030</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>12</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1083-351X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>290</Volume>
<Issue>38</Issue>
<PubDate>
<Year>2015</Year>
<Month>Sep</Month>
<Day>18</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Structural Determinants for Substrate Binding and Catalysis in Triphosphate Tunnel Metalloenzymes.</ArticleTitle>
<Pagination>
<MedlinePgn>23348-60</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.M115.674473</ELocationID>
<Abstract>
<AbstractText>Triphosphate tunnel metalloenzymes (TTMs) are present in all kingdoms of life and catalyze diverse enzymatic reactions such as mRNA capping, the cyclization of adenosine triphosphate, the hydrolysis of thiamine triphosphate, and the synthesis and breakdown of inorganic polyphosphates. TTMs have an unusual tunnel domain fold that harbors substrate- and metal co-factor binding sites. It is presently poorly understood how TTMs specifically sense different triphosphate-containing substrates and how catalysis occurs in the tunnel center. Here we describe substrate-bound structures of inorganic polyphosphatases from Arabidopsis and Escherichia coli, which reveal an unorthodox yet conserved mode of triphosphate and metal co-factor binding. We identify two metal binding sites in these enzymes, with one co-factor involved in substrate coordination and the other in catalysis. Structural comparisons with a substrate- and product-bound mammalian thiamine triphosphatase and with previously reported structures of mRNA capping enzymes, adenylate cyclases, and polyphosphate polymerases suggest that directionality of substrate binding defines TTM catalytic activity. Our work provides insight into the evolution and functional diversification of an ancient enzyme family. </AbstractText>
<CopyrightInformation>© 2015 by The American Society for Biochemistry and Molecular Biology, Inc.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Martinez</LastName>
<ForeName>Jacobo</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>From the Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Truffault</LastName>
<ForeName>Vincent</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hothorn</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-3597-5698</Identifier>
<AffiliationInfo>
<Affiliation>From the Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland and michael.hothorn@unige.ch.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>PDB</DataBankName>
<AccessionNumberList>
<AccessionNumber>1D8H</AccessionNumber>
<AccessionNumber>3BHD</AccessionNumber>
<AccessionNumber>3G3R</AccessionNumber>
<AccessionNumber>3N0Y</AccessionNumber>
<AccessionNumber>3N10</AccessionNumber>
<AccessionNumber>3v85</AccessionNumber>
<AccessionNumber>5a5y</AccessionNumber>
<AccessionNumber>5a60</AccessionNumber>
<AccessionNumber>5a61</AccessionNumber>
<AccessionNumber>5a64</AccessionNumber>
<AccessionNumber>5a65</AccessionNumber>
<AccessionNumber>5a66</AccessionNumber>
<AccessionNumber>5a67</AccessionNumber>
<AccessionNumber>5a68</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>310856</GrantID>
<Agency>European Research Council</Agency>
<Country>International</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>07</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029681">Arabidopsis Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029968">Escherichia coli Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008667">Metalloproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.1.1</RegistryNumber>
<NameOfSubstance UI="D043564">Inorganic Pyrophosphatase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029681" MajorTopicYN="N">Arabidopsis Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029968" MajorTopicYN="N">Escherichia coli Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="N">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D043564" MajorTopicYN="N">Inorganic Pyrophosphatase</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008667" MajorTopicYN="N">Metalloproteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040681" MajorTopicYN="N">Structural Homology, Protein</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">adenylate cyclase (adenylyl cyclase)</Keyword>
<Keyword MajorTopicYN="N">enzyme mechanism</Keyword>
<Keyword MajorTopicYN="N">inorganic polyphosphatase</Keyword>
<Keyword MajorTopicYN="N">manganese</Keyword>
<Keyword MajorTopicYN="N">nuclear magnetic resonance (NMR)</Keyword>
<Keyword MajorTopicYN="N">protein structure</Keyword>
<Keyword MajorTopicYN="N">thiamine triphosphatase</Keyword>
<Keyword MajorTopicYN="N">x-ray crystallography</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>06</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>7</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>7</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>12</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26221030</ArticleId>
<ArticleId IdType="pii">M115.674473</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.M115.674473</ArticleId>
<ArticleId IdType="pmc">PMC4641920</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2011 Sep 30;286(39):34023-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21840996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2006 Sep 8;362(1):114-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16905149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2009 Feb;16(2):212-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19151724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2003 Apr 25;309(1):125-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12726733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 May 18;276(20):17261-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11279161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19461840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 May 3;277(18):15317-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11844801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1988 Jun;171(2):266-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3044186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1998 Jan 15;391(6664):231-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9440683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Nov 7;283(45):31047-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18782773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Apr 24;324(5926):513-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19390046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jan;36(Database issue):D281-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18039703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1990 Jul 15;265(20):11734-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2164013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Dec 19;278(51):50843-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14525979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2003 Nov;59(Pt 11):2023-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14573958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jul;35(Web Server issue):W375-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17452350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1957 Nov;26(2):294-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13499364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2001 Jan;57(Pt 1):122-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11134934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1993 Sep 5;233(1):123-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8377180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2009;78:605-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19344251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2006 Aug;12(8):1468-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16809816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol Screen. 2006 Oct;11(7):854-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16943390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1999 Jul 30;285(5428):756-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10427002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2013 Oct;1830(10):4513-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23707715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2001 Jan 15;29(2):387-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11139608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1999 Nov 24;99(5):533-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10589681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biochem Cell Biol. 2004 Jul;36(7):1348-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15109578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Apr 19;277(16):13771-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11827967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2002 Nov 27;3(1):33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12456267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2013 Dec;280(24):6443-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24021036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Mar 1;31(5):1455-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12595553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Apr 18;283(16):10939-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18276586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2003 Nov 15;322(2):190-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14596827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2008 Apr;16(4):501-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18400173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15572765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr A. 2008 Jan;64(Pt 1):112-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18156677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(9):e43879</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22984449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2006 Oct;13(10):895-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16964259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2014 Mar 4;22(3):452-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24607143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2014 Dec 1;127(Pt 23):5093-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25315834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2003;374:22-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14696367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2011 Jan 21;405(3):787-803</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21094652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Apr 20;282(16):11941-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17303560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2005 Jul;6(7):681-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15947782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2013 Nov;76(4):615-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24004165</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MetalBindProtPlantV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000122 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000122 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MetalBindProtPlantV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:26221030
   |texte=   Structural Determinants for Substrate Binding and Catalysis in Triphosphate Tunnel Metalloenzymes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:26221030" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MetalBindProtPlantV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:03:59 2020. Site generation: Fri Nov 20 11:04:44 2020