Serveur d'exploration sur les protéines de liaison chez les plantes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Metal binding to the N-terminal cytoplasmic domain of the PIB ATPase HMA4 is required for metal transport in Arabidopsis.

Identifieur interne : 000117 ( Main/Corpus ); précédent : 000116; suivant : 000118

Metal binding to the N-terminal cytoplasmic domain of the PIB ATPase HMA4 is required for metal transport in Arabidopsis.

Auteurs : Clémentine Laurent ; Gilles Lekeux ; Ashwinie A. Ukuwela ; Zhiguang Xiao ; Jean-Benoit Charlier ; Bernard Bosman ; Monique Carnol ; Patrick Motte ; Christian Damblon ; Moreno Galleni ; Marc Hanikenne

Source :

RBID : pubmed:26797794

English descriptors

Abstract

PIB ATPases are metal cation pumps that transport metals across membranes. These proteins possess N- and C-terminal cytoplasmic extensions that contain Cys- and His-rich high affinity metal binding domains, which may be involved in metal sensing, metal ion selectivity and/or in regulation of the pump activity. The PIB ATPase HMA4 (Heavy Metal ATPase 4) plays a central role in metal homeostasis in Arabidopsis thaliana and has a key function in zinc and cadmium hypertolerance and hyperaccumulation in the extremophile plant species Arabidopsis halleri. Here, we examined the function and structure of the N-terminal cytoplasmic metal-binding domain of HMA4. We mutagenized a conserved CCTSE metal-binding motif in the domain and assessed the impact of the mutations on protein function and localization in planta, on metal-binding properties in vitro and on protein structure by Nuclear Magnetic Resonance spectroscopy. The two Cys residues of the motif are essential for the function, but not for localization, of HMA4 in planta, whereas the Glu residue is important but not essential. These residues also determine zinc coordination and affinity. Zinc binding to the N-terminal domain is thus crucial for HMA4 protein function, whereas it is not required to maintain the protein structure. Altogether, combining in vivo and in vitro approaches in our study provides insights towards the molecular understanding of metal transport and specificity of metal P-type ATPases.

DOI: 10.1007/s11103-016-0429-z
PubMed: 26797794

Links to Exploration step

pubmed:26797794

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Metal binding to the N-terminal cytoplasmic domain of the PIB ATPase HMA4 is required for metal transport in Arabidopsis.</title>
<author>
<name sortKey="Laurent, Clementine" sort="Laurent, Clementine" uniqKey="Laurent C" first="Clémentine" last="Laurent">Clémentine Laurent</name>
<affiliation>
<nlm:affiliation>Department of Life Sciences, Center for Protein Engineering (CIP), University of Liège, 4000, Liège, Belgium.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lekeux, Gilles" sort="Lekeux, Gilles" uniqKey="Lekeux G" first="Gilles" last="Lekeux">Gilles Lekeux</name>
<affiliation>
<nlm:affiliation>Department of Life Sciences, Center for Protein Engineering (CIP), University of Liège, 4000, Liège, Belgium.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ukuwela, Ashwinie A" sort="Ukuwela, Ashwinie A" uniqKey="Ukuwela A" first="Ashwinie A" last="Ukuwela">Ashwinie A. Ukuwela</name>
<affiliation>
<nlm:affiliation>School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Xiao, Zhiguang" sort="Xiao, Zhiguang" uniqKey="Xiao Z" first="Zhiguang" last="Xiao">Zhiguang Xiao</name>
<affiliation>
<nlm:affiliation>School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Charlier, Jean Benoit" sort="Charlier, Jean Benoit" uniqKey="Charlier J" first="Jean-Benoit" last="Charlier">Jean-Benoit Charlier</name>
<affiliation>
<nlm:affiliation>Department of Life Sciences, Center for Protein Engineering (CIP), University of Liège, 4000, Liège, Belgium.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bosman, Bernard" sort="Bosman, Bernard" uniqKey="Bosman B" first="Bernard" last="Bosman">Bernard Bosman</name>
<affiliation>
<nlm:affiliation>Laboratory of Plant and Microbial Ecology, Department of Biology, Ecology, Evolution, University of Liège, 4000, Liège, Belgium.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Carnol, Monique" sort="Carnol, Monique" uniqKey="Carnol M" first="Monique" last="Carnol">Monique Carnol</name>
<affiliation>
<nlm:affiliation>Laboratory of Plant and Microbial Ecology, Department of Biology, Ecology, Evolution, University of Liège, 4000, Liège, Belgium.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Motte, Patrick" sort="Motte, Patrick" uniqKey="Motte P" first="Patrick" last="Motte">Patrick Motte</name>
<affiliation>
<nlm:affiliation>Department of Life Sciences, Center for Protein Engineering (CIP), University of Liège, 4000, Liège, Belgium.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>PhytoSYSTEMS, University of Liège, 4000, Liège, Belgium.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Damblon, Christian" sort="Damblon, Christian" uniqKey="Damblon C" first="Christian" last="Damblon">Christian Damblon</name>
<affiliation>
<nlm:affiliation>Chimie Biologique Structurale, Department of Chemistry, University of Liège, Liège, Belgium.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Galleni, Moreno" sort="Galleni, Moreno" uniqKey="Galleni M" first="Moreno" last="Galleni">Moreno Galleni</name>
<affiliation>
<nlm:affiliation>Department of Life Sciences, Center for Protein Engineering (CIP), University of Liège, 4000, Liège, Belgium.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hanikenne, Marc" sort="Hanikenne, Marc" uniqKey="Hanikenne M" first="Marc" last="Hanikenne">Marc Hanikenne</name>
<affiliation>
<nlm:affiliation>Department of Life Sciences, Center for Protein Engineering (CIP), University of Liège, 4000, Liège, Belgium. marc.hanikenne@ulg.ac.be.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>PhytoSYSTEMS, University of Liège, 4000, Liège, Belgium. marc.hanikenne@ulg.ac.be.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:26797794</idno>
<idno type="pmid">26797794</idno>
<idno type="doi">10.1007/s11103-016-0429-z</idno>
<idno type="wicri:Area/Main/Corpus">000117</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000117</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Metal binding to the N-terminal cytoplasmic domain of the PIB ATPase HMA4 is required for metal transport in Arabidopsis.</title>
<author>
<name sortKey="Laurent, Clementine" sort="Laurent, Clementine" uniqKey="Laurent C" first="Clémentine" last="Laurent">Clémentine Laurent</name>
<affiliation>
<nlm:affiliation>Department of Life Sciences, Center for Protein Engineering (CIP), University of Liège, 4000, Liège, Belgium.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lekeux, Gilles" sort="Lekeux, Gilles" uniqKey="Lekeux G" first="Gilles" last="Lekeux">Gilles Lekeux</name>
<affiliation>
<nlm:affiliation>Department of Life Sciences, Center for Protein Engineering (CIP), University of Liège, 4000, Liège, Belgium.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ukuwela, Ashwinie A" sort="Ukuwela, Ashwinie A" uniqKey="Ukuwela A" first="Ashwinie A" last="Ukuwela">Ashwinie A. Ukuwela</name>
<affiliation>
<nlm:affiliation>School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Xiao, Zhiguang" sort="Xiao, Zhiguang" uniqKey="Xiao Z" first="Zhiguang" last="Xiao">Zhiguang Xiao</name>
<affiliation>
<nlm:affiliation>School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Charlier, Jean Benoit" sort="Charlier, Jean Benoit" uniqKey="Charlier J" first="Jean-Benoit" last="Charlier">Jean-Benoit Charlier</name>
<affiliation>
<nlm:affiliation>Department of Life Sciences, Center for Protein Engineering (CIP), University of Liège, 4000, Liège, Belgium.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bosman, Bernard" sort="Bosman, Bernard" uniqKey="Bosman B" first="Bernard" last="Bosman">Bernard Bosman</name>
<affiliation>
<nlm:affiliation>Laboratory of Plant and Microbial Ecology, Department of Biology, Ecology, Evolution, University of Liège, 4000, Liège, Belgium.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Carnol, Monique" sort="Carnol, Monique" uniqKey="Carnol M" first="Monique" last="Carnol">Monique Carnol</name>
<affiliation>
<nlm:affiliation>Laboratory of Plant and Microbial Ecology, Department of Biology, Ecology, Evolution, University of Liège, 4000, Liège, Belgium.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Motte, Patrick" sort="Motte, Patrick" uniqKey="Motte P" first="Patrick" last="Motte">Patrick Motte</name>
<affiliation>
<nlm:affiliation>Department of Life Sciences, Center for Protein Engineering (CIP), University of Liège, 4000, Liège, Belgium.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>PhytoSYSTEMS, University of Liège, 4000, Liège, Belgium.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Damblon, Christian" sort="Damblon, Christian" uniqKey="Damblon C" first="Christian" last="Damblon">Christian Damblon</name>
<affiliation>
<nlm:affiliation>Chimie Biologique Structurale, Department of Chemistry, University of Liège, Liège, Belgium.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Galleni, Moreno" sort="Galleni, Moreno" uniqKey="Galleni M" first="Moreno" last="Galleni">Moreno Galleni</name>
<affiliation>
<nlm:affiliation>Department of Life Sciences, Center for Protein Engineering (CIP), University of Liège, 4000, Liège, Belgium.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hanikenne, Marc" sort="Hanikenne, Marc" uniqKey="Hanikenne M" first="Marc" last="Hanikenne">Marc Hanikenne</name>
<affiliation>
<nlm:affiliation>Department of Life Sciences, Center for Protein Engineering (CIP), University of Liège, 4000, Liège, Belgium. marc.hanikenne@ulg.ac.be.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>PhytoSYSTEMS, University of Liège, 4000, Liège, Belgium. marc.hanikenne@ulg.ac.be.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plant molecular biology</title>
<idno type="eISSN">1573-5028</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adenosine Triphosphatases (genetics)</term>
<term>Adenosine Triphosphatases (metabolism)</term>
<term>Amino Acid Motifs (MeSH)</term>
<term>Arabidopsis (genetics)</term>
<term>Arabidopsis (metabolism)</term>
<term>Arabidopsis Proteins (genetics)</term>
<term>Arabidopsis Proteins (metabolism)</term>
<term>Biological Transport (MeSH)</term>
<term>Cadmium (metabolism)</term>
<term>Cell Membrane (MeSH)</term>
<term>Cloning, Molecular (MeSH)</term>
<term>Gene Expression Regulation, Plant (physiology)</term>
<term>Magnetic Resonance Spectroscopy (MeSH)</term>
<term>Metals (metabolism)</term>
<term>Models, Molecular (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Protein Binding (MeSH)</term>
<term>Protein Conformation (MeSH)</term>
<term>Protein Transport (MeSH)</term>
<term>Zinc (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Adenosine Triphosphatases</term>
<term>Arabidopsis Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Adenosine Triphosphatases</term>
<term>Arabidopsis Proteins</term>
<term>Cadmium</term>
<term>Metals</term>
<term>Zinc</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Arabidopsis</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Motifs</term>
<term>Biological Transport</term>
<term>Cell Membrane</term>
<term>Cloning, Molecular</term>
<term>Magnetic Resonance Spectroscopy</term>
<term>Models, Molecular</term>
<term>Mutation</term>
<term>Protein Binding</term>
<term>Protein Conformation</term>
<term>Protein Transport</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">PIB ATPases are metal cation pumps that transport metals across membranes. These proteins possess N- and C-terminal cytoplasmic extensions that contain Cys- and His-rich high affinity metal binding domains, which may be involved in metal sensing, metal ion selectivity and/or in regulation of the pump activity. The PIB ATPase HMA4 (Heavy Metal ATPase 4) plays a central role in metal homeostasis in Arabidopsis thaliana and has a key function in zinc and cadmium hypertolerance and hyperaccumulation in the extremophile plant species Arabidopsis halleri. Here, we examined the function and structure of the N-terminal cytoplasmic metal-binding domain of HMA4. We mutagenized a conserved CCTSE metal-binding motif in the domain and assessed the impact of the mutations on protein function and localization in planta, on metal-binding properties in vitro and on protein structure by Nuclear Magnetic Resonance spectroscopy. The two Cys residues of the motif are essential for the function, but not for localization, of HMA4 in planta, whereas the Glu residue is important but not essential. These residues also determine zinc coordination and affinity. Zinc binding to the N-terminal domain is thus crucial for HMA4 protein function, whereas it is not required to maintain the protein structure. Altogether, combining in vivo and in vitro approaches in our study provides insights towards the molecular understanding of metal transport and specificity of metal P-type ATPases. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26797794</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>07</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1573-5028</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>90</Volume>
<Issue>4-5</Issue>
<PubDate>
<Year>2016</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Plant molecular biology</Title>
<ISOAbbreviation>Plant Mol Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Metal binding to the N-terminal cytoplasmic domain of the PIB ATPase HMA4 is required for metal transport in Arabidopsis.</ArticleTitle>
<Pagination>
<MedlinePgn>453-66</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s11103-016-0429-z</ELocationID>
<Abstract>
<AbstractText>PIB ATPases are metal cation pumps that transport metals across membranes. These proteins possess N- and C-terminal cytoplasmic extensions that contain Cys- and His-rich high affinity metal binding domains, which may be involved in metal sensing, metal ion selectivity and/or in regulation of the pump activity. The PIB ATPase HMA4 (Heavy Metal ATPase 4) plays a central role in metal homeostasis in Arabidopsis thaliana and has a key function in zinc and cadmium hypertolerance and hyperaccumulation in the extremophile plant species Arabidopsis halleri. Here, we examined the function and structure of the N-terminal cytoplasmic metal-binding domain of HMA4. We mutagenized a conserved CCTSE metal-binding motif in the domain and assessed the impact of the mutations on protein function and localization in planta, on metal-binding properties in vitro and on protein structure by Nuclear Magnetic Resonance spectroscopy. The two Cys residues of the motif are essential for the function, but not for localization, of HMA4 in planta, whereas the Glu residue is important but not essential. These residues also determine zinc coordination and affinity. Zinc binding to the N-terminal domain is thus crucial for HMA4 protein function, whereas it is not required to maintain the protein structure. Altogether, combining in vivo and in vitro approaches in our study provides insights towards the molecular understanding of metal transport and specificity of metal P-type ATPases. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Laurent</LastName>
<ForeName>Clémentine</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Life Sciences, Center for Protein Engineering (CIP), University of Liège, 4000, Liège, Belgium.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lekeux</LastName>
<ForeName>Gilles</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Department of Life Sciences, Center for Protein Engineering (CIP), University of Liège, 4000, Liège, Belgium.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ukuwela</LastName>
<ForeName>Ashwinie A</ForeName>
<Initials>AA</Initials>
<AffiliationInfo>
<Affiliation>School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xiao</LastName>
<ForeName>Zhiguang</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Charlier</LastName>
<ForeName>Jean-Benoit</ForeName>
<Initials>JB</Initials>
<AffiliationInfo>
<Affiliation>Department of Life Sciences, Center for Protein Engineering (CIP), University of Liège, 4000, Liège, Belgium.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bosman</LastName>
<ForeName>Bernard</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Plant and Microbial Ecology, Department of Biology, Ecology, Evolution, University of Liège, 4000, Liège, Belgium.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Carnol</LastName>
<ForeName>Monique</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Plant and Microbial Ecology, Department of Biology, Ecology, Evolution, University of Liège, 4000, Liège, Belgium.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Motte</LastName>
<ForeName>Patrick</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Department of Life Sciences, Center for Protein Engineering (CIP), University of Liège, 4000, Liège, Belgium.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>PhytoSYSTEMS, University of Liège, 4000, Liège, Belgium.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Damblon</LastName>
<ForeName>Christian</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Chimie Biologique Structurale, Department of Chemistry, University of Liège, Liège, Belgium.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Galleni</LastName>
<ForeName>Moreno</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Life Sciences, Center for Protein Engineering (CIP), University of Liège, 4000, Liège, Belgium.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hanikenne</LastName>
<ForeName>Marc</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Life Sciences, Center for Protein Engineering (CIP), University of Liège, 4000, Liège, Belgium. marc.hanikenne@ulg.ac.be.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>PhytoSYSTEMS, University of Liège, 4000, Liège, Belgium. marc.hanikenne@ulg.ac.be.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>01</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Plant Mol Biol</MedlineTA>
<NlmUniqueID>9106343</NlmUniqueID>
<ISSNLinking>0167-4412</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029681">Arabidopsis Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008670">Metals</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>00BH33GNGH</RegistryNumber>
<NameOfSubstance UI="D002104">Cadmium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.1.-</RegistryNumber>
<NameOfSubstance UI="D000251">Adenosine Triphosphatases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.1.3</RegistryNumber>
<NameOfSubstance UI="C477864">HMA4 protein, Arabidopsis</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>J41CSQ7QDS</RegistryNumber>
<NameOfSubstance UI="D015032">Zinc</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000251" MajorTopicYN="N">Adenosine Triphosphatases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020816" MajorTopicYN="N">Amino Acid Motifs</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029681" MajorTopicYN="N">Arabidopsis Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001692" MajorTopicYN="N">Biological Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002104" MajorTopicYN="N">Cadmium</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002462" MajorTopicYN="N">Cell Membrane</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003001" MajorTopicYN="N">Cloning, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009682" MajorTopicYN="N">Magnetic Resonance Spectroscopy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008670" MajorTopicYN="N">Metals</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021381" MajorTopicYN="N">Protein Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015032" MajorTopicYN="N">Zinc</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Arabidopsis</Keyword>
<Keyword MajorTopicYN="N">Metal P-type ATPase</Keyword>
<Keyword MajorTopicYN="N">Metal binding domain</Keyword>
<Keyword MajorTopicYN="N">Structure–function analysis</Keyword>
<Keyword MajorTopicYN="N">Zinc transport</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>09</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>01</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>1</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>1</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>7</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26797794</ArticleId>
<ArticleId IdType="doi">10.1007/s11103-016-0429-z</ArticleId>
<ArticleId IdType="pii">10.1007/s11103-016-0429-z</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biometals. 2007 Jun;20(3-4):233-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17219055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 Jun;63(11):4179-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22581842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Dec 15;48(49):11640-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19883117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2011 Jul;16(7):395-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21489854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2010;61:517-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20192749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Gastroenterol. 2009 Mar;25(2):136-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19528881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2015 Jul;66(13):3865-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25900619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Oct 17;278(42):40534-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12876283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2006 Feb 24;356(3):638-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16388822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biometals. 2001 Sep-Dec;14(3-4):251-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11831460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2011 Jun;14(3):252-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21531166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;181(1):79-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19076719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2002 Jun 18;3(7):RESEARCH0034</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12184808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biometals. 2009 Feb;22(1):177-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19130269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(4):e36187</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22558375</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Dec;16(6):735-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10069079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Apr;17(4):1233-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15772282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2014 Apr;65(6):1529-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24510941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2003 Dec;54(393):2601-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14585824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011 Mar 10;6(3):e17814</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21423774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biophys. 2011;40:243-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21351879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2000 Jan 15;8(1):47-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10673424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Membr Biol. 2003 Sep 15;195(2):93-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14692449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2015 Aug;97(3):423-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25899340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Jan;45(2):225-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16367966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Struct Biol. 2007 Apr;158(1):46-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17169574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2005 Oct;10(10):491-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16154798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Aug 8;418(6898):605-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12167852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2007 Jul 3;46(26):7754-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17550234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;181(1):71-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19076718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2013;9(8):e1003707</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23990800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Microbiol Biotechnol. 2010;19(1-2):5-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20962537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Jan 07;4:544</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24575101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Jul;35(2):164-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12848823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010 Oct 20;5(10):e13388</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20975991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Sep;142(1):148-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16844841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Jan;25(1):4-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23371952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2009 Jun;1793(6):941-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19010358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2004 Oct 22;576(3):306-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15498553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Oct;133(2):462-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14555774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Membr Biol. 2003 Jan 1;191(1):1-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12532272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Jun;15(6):1333-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12782727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2005 Feb 28;579(6):1515-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15733866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Jun;58(5):737-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19207208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Apr 11;283(15):9633-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18252706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 May;16(5):1327-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15100400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Nutr. 1997;17:37-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9240918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2004;73:269-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15189143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 2009 Aug;44(4):213-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19548092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2002 Nov 8;323(5):883-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12417201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 May;153(1):273-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20237019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2015 Sep;66(19):5783-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26044091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Feb 3;281(5):2882-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16282320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Inorg Chem. 2010 Jan;15(1):47-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19851794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;173(4):677-702</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17286818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Oct;148(2):969-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18701674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metallomics. 2014 Nov;6(11):2109-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25272315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 1998 Jan;46(1):84-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9419228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 May 15;453(7193):391-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18425111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2008 Aug 1;476(1):3-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18455499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Oct 8;285(41):31243-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20650903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2014 Oct 23;514(7523):518-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25132545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann N Y Acad Sci. 2003 Apr;986:224-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12763800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2013 Jun;36(6):1093-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23170996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2007 May;176(1):659-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17409091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Feb;137(2):428-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15710683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2012 Feb 21;3:31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22629273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2003 Jan 30;3:2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12556248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Jun;144(2):1052-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17434989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2007;8(2):R19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17291332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2004 Apr;5(4):282-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15071553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2007 May 25;581(12):2263-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17462635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2009 May;5(5):333-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19377460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1997 Nov 11;36(45):13882-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9374866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Sep;139(1):5-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16166256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Jan 19;276(3):2234-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11053407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metallomics. 2013 May;5(5):501-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23579336</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MetalBindProtPlantV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000117 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000117 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MetalBindProtPlantV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:26797794
   |texte=   Metal binding to the N-terminal cytoplasmic domain of the PIB ATPase HMA4 is required for metal transport in Arabidopsis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:26797794" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MetalBindProtPlantV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:03:59 2020. Site generation: Fri Nov 20 11:04:44 2020