Serveur d'exploration sur les protéines de liaison chez les plantes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Overlapping transcriptional expression response of wheat zinc-induced facilitator-like transporters emphasize important role during Fe and Zn stress.

Identifieur interne : 000019 ( Main/Corpus ); précédent : 000018; suivant : 000020

Overlapping transcriptional expression response of wheat zinc-induced facilitator-like transporters emphasize important role during Fe and Zn stress.

Auteurs : Shivani Sharma ; Gazaldeep Kaur ; Anil Kumar ; Varsha Meena ; Jaspreet Kaur ; Ajay Kumar Pandey

Source :

RBID : pubmed:31547799

English descriptors

Abstract

BACKGROUND

Hexaploid wheat is an important cereal crop that has been targeted to enhance grain micronutrient content including zinc (Zn) and iron (Fe). In this direction, modulating the expression of plant transporters involved in Fe and Zn homeostasis has proven to be one of the promising approaches. The present work was undertaken to identify wheat zinc-induced facilitator-like (ZIFL) family of transporters. The wheat ZIFL genes were characterized for their transcriptional expression response during micronutrient fluctuations and exposure to multiple heavy metals.

RESULTS

The genome-wide analyses resulted in identification of fifteen putative TaZIFL-like genes, which were distributed only on Chromosome 3, 4 and 5. Wheat ZIFL proteins subjected to the phylogenetic analysis showed the uniform distribution along with rice, Arabidopsis and maize. In-silico analysis of the promoters of the wheat ZIFL genes demonstrated the presence of multiple metal binding sites including those which are involved in Fe and heavy metal homeostasis. Quantitative real-time PCR analysis of wheat ZIFL genes suggested the differential regulation of the transcripts in both roots and shoots under Zn surplus and also during Fe deficiency. Specifically, in roots, TaZIFL2.3, TaZIFL4.1, TaZIFL4.2, TaZIFL5, TaZIFL6.1 and TaZIFL6.2 were significantly up-regulated by both Zn and Fe. This suggested that ZIFL could possibly be regulated by both the nutrient stress in a tissue specific manner. When exposed to heavy metals, TaZIFL4.2 and TaZIFL7.1 show significant up-regulation, whereas TaZIFL5 and TaZIFL6.2 remained almost unaffected.

CONCLUSION

This is the first report for detailed analysis of wheat ZIFL genes. ZIFL genes also encode for transporter of mugineic acid (TOM) proteins, that are involved in the release of phytosiderophores to enhance Fe/Zn uptake. The detailed expression analysis suggests the varying expression patterns during development of wheat seedlings and also against abiotic/biotic stresses. Overall, this study will lay foundation to prioritize functional assessment of the candidate ZIFL as a putative TOM protein in wheat.


DOI: 10.1186/s12867-019-0139-6
PubMed: 31547799
PubMed Central: PMC6757437

Links to Exploration step

pubmed:31547799

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Overlapping transcriptional expression response of wheat zinc-induced facilitator-like transporters emphasize important role during Fe and Zn stress.</title>
<author>
<name sortKey="Sharma, Shivani" sort="Sharma, Shivani" uniqKey="Sharma S" first="Shivani" last="Sharma">Shivani Sharma</name>
<affiliation>
<nlm:affiliation>National Agri-Food Biotechnology Institute (Department of Biotechnology), Sector 81, Knowledge City, Mohali, Punjab, 140306, India.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>University Institute of Engineering and Technology, Panjab University, Sector 25, Chandigarh, Punjab, 160015, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kaur, Gazaldeep" sort="Kaur, Gazaldeep" uniqKey="Kaur G" first="Gazaldeep" last="Kaur">Gazaldeep Kaur</name>
<affiliation>
<nlm:affiliation>National Agri-Food Biotechnology Institute (Department of Biotechnology), Sector 81, Knowledge City, Mohali, Punjab, 140306, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kumar, Anil" sort="Kumar, Anil" uniqKey="Kumar A" first="Anil" last="Kumar">Anil Kumar</name>
<affiliation>
<nlm:affiliation>National Agri-Food Biotechnology Institute (Department of Biotechnology), Sector 81, Knowledge City, Mohali, Punjab, 140306, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Meena, Varsha" sort="Meena, Varsha" uniqKey="Meena V" first="Varsha" last="Meena">Varsha Meena</name>
<affiliation>
<nlm:affiliation>National Agri-Food Biotechnology Institute (Department of Biotechnology), Sector 81, Knowledge City, Mohali, Punjab, 140306, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kaur, Jaspreet" sort="Kaur, Jaspreet" uniqKey="Kaur J" first="Jaspreet" last="Kaur">Jaspreet Kaur</name>
<affiliation>
<nlm:affiliation>University Institute of Engineering and Technology, Panjab University, Sector 25, Chandigarh, Punjab, 160015, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pandey, Ajay Kumar" sort="Pandey, Ajay Kumar" uniqKey="Pandey A" first="Ajay Kumar" last="Pandey">Ajay Kumar Pandey</name>
<affiliation>
<nlm:affiliation>National Agri-Food Biotechnology Institute (Department of Biotechnology), Sector 81, Knowledge City, Mohali, Punjab, 140306, India. pandeyak@nabi.res.in.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31547799</idno>
<idno type="pmid">31547799</idno>
<idno type="doi">10.1186/s12867-019-0139-6</idno>
<idno type="pmc">PMC6757437</idno>
<idno type="wicri:Area/Main/Corpus">000019</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000019</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Overlapping transcriptional expression response of wheat zinc-induced facilitator-like transporters emphasize important role during Fe and Zn stress.</title>
<author>
<name sortKey="Sharma, Shivani" sort="Sharma, Shivani" uniqKey="Sharma S" first="Shivani" last="Sharma">Shivani Sharma</name>
<affiliation>
<nlm:affiliation>National Agri-Food Biotechnology Institute (Department of Biotechnology), Sector 81, Knowledge City, Mohali, Punjab, 140306, India.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>University Institute of Engineering and Technology, Panjab University, Sector 25, Chandigarh, Punjab, 160015, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kaur, Gazaldeep" sort="Kaur, Gazaldeep" uniqKey="Kaur G" first="Gazaldeep" last="Kaur">Gazaldeep Kaur</name>
<affiliation>
<nlm:affiliation>National Agri-Food Biotechnology Institute (Department of Biotechnology), Sector 81, Knowledge City, Mohali, Punjab, 140306, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kumar, Anil" sort="Kumar, Anil" uniqKey="Kumar A" first="Anil" last="Kumar">Anil Kumar</name>
<affiliation>
<nlm:affiliation>National Agri-Food Biotechnology Institute (Department of Biotechnology), Sector 81, Knowledge City, Mohali, Punjab, 140306, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Meena, Varsha" sort="Meena, Varsha" uniqKey="Meena V" first="Varsha" last="Meena">Varsha Meena</name>
<affiliation>
<nlm:affiliation>National Agri-Food Biotechnology Institute (Department of Biotechnology), Sector 81, Knowledge City, Mohali, Punjab, 140306, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kaur, Jaspreet" sort="Kaur, Jaspreet" uniqKey="Kaur J" first="Jaspreet" last="Kaur">Jaspreet Kaur</name>
<affiliation>
<nlm:affiliation>University Institute of Engineering and Technology, Panjab University, Sector 25, Chandigarh, Punjab, 160015, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pandey, Ajay Kumar" sort="Pandey, Ajay Kumar" uniqKey="Pandey A" first="Ajay Kumar" last="Pandey">Ajay Kumar Pandey</name>
<affiliation>
<nlm:affiliation>National Agri-Food Biotechnology Institute (Department of Biotechnology), Sector 81, Knowledge City, Mohali, Punjab, 140306, India. pandeyak@nabi.res.in.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC molecular biology</title>
<idno type="eISSN">1471-2199</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cation Transport Proteins (genetics)</term>
<term>Genome-Wide Association Study (MeSH)</term>
<term>Iron (metabolism)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Roots (genetics)</term>
<term>Plant Roots (metabolism)</term>
<term>Plant Shoots (genetics)</term>
<term>Plant Shoots (metabolism)</term>
<term>Polyploidy (MeSH)</term>
<term>Seedlings (metabolism)</term>
<term>Stress, Physiological (MeSH)</term>
<term>Triticum (genetics)</term>
<term>Triticum (metabolism)</term>
<term>Zinc (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Cation Transport Proteins</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Iron</term>
<term>Zinc</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plant Roots</term>
<term>Plant Shoots</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Roots</term>
<term>Plant Shoots</term>
<term>Seedlings</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Genome-Wide Association Study</term>
<term>Phylogeny</term>
<term>Polyploidy</term>
<term>Stress, Physiological</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Hexaploid wheat is an important cereal crop that has been targeted to enhance grain micronutrient content including zinc (Zn) and iron (Fe). In this direction, modulating the expression of plant transporters involved in Fe and Zn homeostasis has proven to be one of the promising approaches. The present work was undertaken to identify wheat zinc-induced facilitator-like (ZIFL) family of transporters. The wheat ZIFL genes were characterized for their transcriptional expression response during micronutrient fluctuations and exposure to multiple heavy metals.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>The genome-wide analyses resulted in identification of fifteen putative TaZIFL-like genes, which were distributed only on Chromosome 3, 4 and 5. Wheat ZIFL proteins subjected to the phylogenetic analysis showed the uniform distribution along with rice, Arabidopsis and maize. In-silico analysis of the promoters of the wheat ZIFL genes demonstrated the presence of multiple metal binding sites including those which are involved in Fe and heavy metal homeostasis. Quantitative real-time PCR analysis of wheat ZIFL genes suggested the differential regulation of the transcripts in both roots and shoots under Zn surplus and also during Fe deficiency. Specifically, in roots, TaZIFL2.3, TaZIFL4.1, TaZIFL4.2, TaZIFL5, TaZIFL6.1 and TaZIFL6.2 were significantly up-regulated by both Zn and Fe. This suggested that ZIFL could possibly be regulated by both the nutrient stress in a tissue specific manner. When exposed to heavy metals, TaZIFL4.2 and TaZIFL7.1 show significant up-regulation, whereas TaZIFL5 and TaZIFL6.2 remained almost unaffected.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>This is the first report for detailed analysis of wheat ZIFL genes. ZIFL genes also encode for transporter of mugineic acid (TOM) proteins, that are involved in the release of phytosiderophores to enhance Fe/Zn uptake. The detailed expression analysis suggests the varying expression patterns during development of wheat seedlings and also against abiotic/biotic stresses. Overall, this study will lay foundation to prioritize functional assessment of the candidate ZIFL as a putative TOM protein in wheat.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31547799</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>04</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2199</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>20</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2019</Year>
<Month>09</Month>
<Day>23</Day>
</PubDate>
</JournalIssue>
<Title>BMC molecular biology</Title>
<ISOAbbreviation>BMC Mol Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Overlapping transcriptional expression response of wheat zinc-induced facilitator-like transporters emphasize important role during Fe and Zn stress.</ArticleTitle>
<Pagination>
<MedlinePgn>22</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12867-019-0139-6</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND">Hexaploid wheat is an important cereal crop that has been targeted to enhance grain micronutrient content including zinc (Zn) and iron (Fe). In this direction, modulating the expression of plant transporters involved in Fe and Zn homeostasis has proven to be one of the promising approaches. The present work was undertaken to identify wheat zinc-induced facilitator-like (ZIFL) family of transporters. The wheat ZIFL genes were characterized for their transcriptional expression response during micronutrient fluctuations and exposure to multiple heavy metals.</AbstractText>
<AbstractText Label="RESULTS">The genome-wide analyses resulted in identification of fifteen putative TaZIFL-like genes, which were distributed only on Chromosome 3, 4 and 5. Wheat ZIFL proteins subjected to the phylogenetic analysis showed the uniform distribution along with rice, Arabidopsis and maize. In-silico analysis of the promoters of the wheat ZIFL genes demonstrated the presence of multiple metal binding sites including those which are involved in Fe and heavy metal homeostasis. Quantitative real-time PCR analysis of wheat ZIFL genes suggested the differential regulation of the transcripts in both roots and shoots under Zn surplus and also during Fe deficiency. Specifically, in roots, TaZIFL2.3, TaZIFL4.1, TaZIFL4.2, TaZIFL5, TaZIFL6.1 and TaZIFL6.2 were significantly up-regulated by both Zn and Fe. This suggested that ZIFL could possibly be regulated by both the nutrient stress in a tissue specific manner. When exposed to heavy metals, TaZIFL4.2 and TaZIFL7.1 show significant up-regulation, whereas TaZIFL5 and TaZIFL6.2 remained almost unaffected.</AbstractText>
<AbstractText Label="CONCLUSION">This is the first report for detailed analysis of wheat ZIFL genes. ZIFL genes also encode for transporter of mugineic acid (TOM) proteins, that are involved in the release of phytosiderophores to enhance Fe/Zn uptake. The detailed expression analysis suggests the varying expression patterns during development of wheat seedlings and also against abiotic/biotic stresses. Overall, this study will lay foundation to prioritize functional assessment of the candidate ZIFL as a putative TOM protein in wheat.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sharma</LastName>
<ForeName>Shivani</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>National Agri-Food Biotechnology Institute (Department of Biotechnology), Sector 81, Knowledge City, Mohali, Punjab, 140306, India.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>University Institute of Engineering and Technology, Panjab University, Sector 25, Chandigarh, Punjab, 160015, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kaur</LastName>
<ForeName>Gazaldeep</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>National Agri-Food Biotechnology Institute (Department of Biotechnology), Sector 81, Knowledge City, Mohali, Punjab, 140306, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kumar</LastName>
<ForeName>Anil</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>National Agri-Food Biotechnology Institute (Department of Biotechnology), Sector 81, Knowledge City, Mohali, Punjab, 140306, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Meena</LastName>
<ForeName>Varsha</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>National Agri-Food Biotechnology Institute (Department of Biotechnology), Sector 81, Knowledge City, Mohali, Punjab, 140306, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kaur</LastName>
<ForeName>Jaspreet</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>University Institute of Engineering and Technology, Panjab University, Sector 25, Chandigarh, Punjab, 160015, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pandey</LastName>
<ForeName>Ajay Kumar</ForeName>
<Initials>AK</Initials>
<Identifier Source="ORCID">0000-0003-1064-139X</Identifier>
<AffiliationInfo>
<Affiliation>National Agri-Food Biotechnology Institute (Department of Biotechnology), Sector 81, Knowledge City, Mohali, Punjab, 140306, India. pandeyak@nabi.res.in.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>09</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Mol Biol</MedlineTA>
<NlmUniqueID>100966983</NlmUniqueID>
<ISSNLinking>1471-2199</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D027682">Cation Transport Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>E1UOL152H7</RegistryNumber>
<NameOfSubstance UI="D007501">Iron</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>J41CSQ7QDS</RegistryNumber>
<NameOfSubstance UI="D015032">Zinc</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D027682" MajorTopicYN="N">Cation Transport Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055106" MajorTopicYN="N">Genome-Wide Association Study</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007501" MajorTopicYN="N">Iron</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018520" MajorTopicYN="N">Plant Shoots</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011123" MajorTopicYN="N">Polyploidy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D036226" MajorTopicYN="N">Seedlings</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014908" MajorTopicYN="Y">Triticum</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015032" MajorTopicYN="N">Zinc</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Biofortification</Keyword>
<Keyword MajorTopicYN="Y">Iron deficiency</Keyword>
<Keyword MajorTopicYN="Y">Micronutrient uptake</Keyword>
<Keyword MajorTopicYN="Y">Triticum aestivum L.</Keyword>
<Keyword MajorTopicYN="Y">Zinc transport</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>02</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>09</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>9</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>9</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>4</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31547799</ArticleId>
<ArticleId IdType="doi">10.1186/s12867-019-0139-6</ArticleId>
<ArticleId IdType="pii">10.1186/s12867-019-0139-6</ArticleId>
<ArticleId IdType="pmc">PMC6757437</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol. 2017 Aug;174(4):2434-2444</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28684433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2015 Aug 13;16(8):19111-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26287170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jan;39(Database issue):D225-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21109532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2018 Aug 21;9:1190</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30186295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2015 Jun 20;15:152</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26092253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Feb;24(2):724-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22374397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2014 Jan 16;15:29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24433256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Feb;149(2):894-904</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19036834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Apr 28;6:290</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25972885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 May 28;93(11):5624-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8643627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Jan 18;6:1174</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26834757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2003 May;52(2):433-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12856948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Hum Neurosci. 2013 Mar 26;7:97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23532379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2009 Jun;50(6):1156-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19433490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2015 Apr 15;31(8):1296-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25504850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Feb 18;286(7):5446-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21156806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2014 Jul;224:74-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24908508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2012 Sep;1823(9):1553-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22626733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2014 Dec 19;14:368</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25524236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2018 Mar 06;9:259</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29559984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2011 Jan 25;11:20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21266036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Dec 20;6:39293</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27995999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Mar;25(3):901-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23524662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2015 Jan;56(1):148-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25378686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2012 Aug;10(6):668-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22672716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013 Oct 24;14:728</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24152241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2017 Feb;130(2):283-292</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27722771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Apr;143(4):1705-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17277087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jul;35(Web Server issue):W585-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17517783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Integr Genomics. 2019 Jan;19(1):75-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30120602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2009 Apr;32(4):408-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19183299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Nutr Soc. 2006 Feb;65(1):51-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16441944</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2015 Sep;116(4):613-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25538112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Oct;21(10):3326-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19861554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Nov 26;8(11):e81606</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24303057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Bioinform. 2008 Jul;9(4):299-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18417537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2015 Nov 13;290(46):27688-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26432636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Nov 27;104(48):19150-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18025467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jul;37(Web Server issue):W202-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19458158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013 Feb 04;14:77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23379779</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MetalBindProtPlantV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000019 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000019 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MetalBindProtPlantV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:31547799
   |texte=   Overlapping transcriptional expression response of wheat zinc-induced facilitator-like transporters emphasize important role during Fe and Zn stress.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:31547799" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MetalBindProtPlantV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:03:59 2020. Site generation: Fri Nov 20 11:04:44 2020