Serveur d'exploration Melampsora (ISTEX)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Heteroduplex molecules formed between allelic sequences cause nonparental RAPD bands.

Identifieur interne : 000206 ( PubMed/Corpus ); précédent : 000205; suivant : 000207

Heteroduplex molecules formed between allelic sequences cause nonparental RAPD bands.

Auteurs : M A Ayliffe ; G J Lawrence ; J G Ellis ; A J Pryor

Source :

RBID : pubmed:8202363

English descriptors

Abstract

Primers (10-mers) of random sequence were used to amplify RAPD bands from genomic DNA of an F1 strain of flax rust (Melampsora lini) and its two parent strains. One primer out of 160 tested was unusual in that it amplified a product from F1 DNA that was not amplified from either parental DNAs. The same primer also generated two RAPD bands that segregated as codominant alleles amongst F2 progeny. The nonparental band was only generated from DNAs of F2 individuals that were heterozygous for these two allelic sequences. Sequence analysis of the two RAPD alleles demonstrated greater than 99% sequence identity, although the larger allele possessed an additional 38bp relative to the smaller. Mixing of the two allelic sequences followed by denaturation and annealing in the absence of polymerase activity resulted in the formation of the nonparental band. Thus the nonparental band present in some RAPD reactions consisted of a heteroduplex molecule formed between two allelic sequences of different size. These data demonstrate that heteroduplex molecules formed between allelic RAPD products are a potential source of artifactual polymorphism that can arise during RAPD analysis.

DOI: 10.1093/nar/22.9.1632
PubMed: 8202363
PubMed Central: PMC308040

Links to Exploration step

pubmed:8202363

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Heteroduplex molecules formed between allelic sequences cause nonparental RAPD bands.</title>
<author>
<name sortKey="Ayliffe, M A" sort="Ayliffe, M A" uniqKey="Ayliffe M" first="M A" last="Ayliffe">M A Ayliffe</name>
<affiliation>
<nlm:affiliation>CSIRO Division of Plant Industry, Canberra, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lawrence, G J" sort="Lawrence, G J" uniqKey="Lawrence G" first="G J" last="Lawrence">G J Lawrence</name>
</author>
<author>
<name sortKey="Ellis, J G" sort="Ellis, J G" uniqKey="Ellis J" first="J G" last="Ellis">J G Ellis</name>
</author>
<author>
<name sortKey="Pryor, A J" sort="Pryor, A J" uniqKey="Pryor A" first="A J" last="Pryor">A J Pryor</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1994">1994</date>
<idno type="RBID">pubmed:8202363</idno>
<idno type="pmid">8202363</idno>
<idno type="pmc">PMC308040</idno>
<idno type="doi">10.1093/nar/22.9.1632</idno>
<idno type="wicri:Area/PubMed/Corpus">000206</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000206</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Heteroduplex molecules formed between allelic sequences cause nonparental RAPD bands.</title>
<author>
<name sortKey="Ayliffe, M A" sort="Ayliffe, M A" uniqKey="Ayliffe M" first="M A" last="Ayliffe">M A Ayliffe</name>
<affiliation>
<nlm:affiliation>CSIRO Division of Plant Industry, Canberra, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lawrence, G J" sort="Lawrence, G J" uniqKey="Lawrence G" first="G J" last="Lawrence">G J Lawrence</name>
</author>
<author>
<name sortKey="Ellis, J G" sort="Ellis, J G" uniqKey="Ellis J" first="J G" last="Ellis">J G Ellis</name>
</author>
<author>
<name sortKey="Pryor, A J" sort="Pryor, A J" uniqKey="Pryor A" first="A J" last="Pryor">A J Pryor</name>
</author>
</analytic>
<series>
<title level="j">Nucleic acids research</title>
<idno type="ISSN">0305-1048</idno>
<imprint>
<date when="1994" type="published">1994</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alleles (MeSH)</term>
<term>Base Sequence (MeSH)</term>
<term>Basidiomycota (genetics)</term>
<term>DNA (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Nucleic Acid Heteroduplexes (MeSH)</term>
<term>Polymerase Chain Reaction (MeSH)</term>
<term>Polymorphism, Genetic (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>DNA</term>
<term>Nucleic Acid Heteroduplexes</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Alleles</term>
<term>Base Sequence</term>
<term>Molecular Sequence Data</term>
<term>Polymerase Chain Reaction</term>
<term>Polymorphism, Genetic</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Primers (10-mers) of random sequence were used to amplify RAPD bands from genomic DNA of an F1 strain of flax rust (Melampsora lini) and its two parent strains. One primer out of 160 tested was unusual in that it amplified a product from F1 DNA that was not amplified from either parental DNAs. The same primer also generated two RAPD bands that segregated as codominant alleles amongst F2 progeny. The nonparental band was only generated from DNAs of F2 individuals that were heterozygous for these two allelic sequences. Sequence analysis of the two RAPD alleles demonstrated greater than 99% sequence identity, although the larger allele possessed an additional 38bp relative to the smaller. Mixing of the two allelic sequences followed by denaturation and annealing in the absence of polymerase activity resulted in the formation of the nonparental band. Thus the nonparental band present in some RAPD reactions consisted of a heteroduplex molecule formed between two allelic sequences of different size. These data demonstrate that heteroduplex molecules formed between allelic RAPD products are a potential source of artifactual polymorphism that can arise during RAPD analysis.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">8202363</PMID>
<DateCompleted>
<Year>1994</Year>
<Month>07</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>05</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0305-1048</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>22</Volume>
<Issue>9</Issue>
<PubDate>
<Year>1994</Year>
<Month>May</Month>
<Day>11</Day>
</PubDate>
</JournalIssue>
<Title>Nucleic acids research</Title>
<ISOAbbreviation>Nucleic Acids Res</ISOAbbreviation>
</Journal>
<ArticleTitle>Heteroduplex molecules formed between allelic sequences cause nonparental RAPD bands.</ArticleTitle>
<Pagination>
<MedlinePgn>1632-6</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Primers (10-mers) of random sequence were used to amplify RAPD bands from genomic DNA of an F1 strain of flax rust (Melampsora lini) and its two parent strains. One primer out of 160 tested was unusual in that it amplified a product from F1 DNA that was not amplified from either parental DNAs. The same primer also generated two RAPD bands that segregated as codominant alleles amongst F2 progeny. The nonparental band was only generated from DNAs of F2 individuals that were heterozygous for these two allelic sequences. Sequence analysis of the two RAPD alleles demonstrated greater than 99% sequence identity, although the larger allele possessed an additional 38bp relative to the smaller. Mixing of the two allelic sequences followed by denaturation and annealing in the absence of polymerase activity resulted in the formation of the nonparental band. Thus the nonparental band present in some RAPD reactions consisted of a heteroduplex molecule formed between two allelic sequences of different size. These data demonstrate that heteroduplex molecules formed between allelic RAPD products are a potential source of artifactual polymorphism that can arise during RAPD analysis.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ayliffe</LastName>
<ForeName>M A</ForeName>
<Initials>MA</Initials>
<AffiliationInfo>
<Affiliation>CSIRO Division of Plant Industry, Canberra, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lawrence</LastName>
<ForeName>G J</ForeName>
<Initials>GJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ellis</LastName>
<ForeName>J G</ForeName>
<Initials>JG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pryor</LastName>
<ForeName>A J</ForeName>
<Initials>AJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Nucleic Acids Res</MedlineTA>
<NlmUniqueID>0411011</NlmUniqueID>
<ISSNLinking>0305-1048</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009692">Nucleic Acid Heteroduplexes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9007-49-2</RegistryNumber>
<NameOfSubstance UI="D004247">DNA</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000483" MajorTopicYN="Y">Alleles</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004247" MajorTopicYN="N">DNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009692" MajorTopicYN="Y">Nucleic Acid Heteroduplexes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016133" MajorTopicYN="Y">Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011110" MajorTopicYN="Y">Polymorphism, Genetic</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1994</Year>
<Month>5</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1994</Year>
<Month>5</Month>
<Day>11</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1994</Year>
<Month>5</Month>
<Day>11</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">8202363</ArticleId>
<ArticleId IdType="pmc">PMC308040</ArticleId>
<ArticleId IdType="doi">10.1093/nar/22.9.1632</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Anal Biochem. 1975 May 26;66(1):213-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1096670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1982 Jun;29(2):319-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6288254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1990 Nov 25;18(22):6531-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1979162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1990 Dec 25;18(24):7213-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2259619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Microbiol. 1992 Oct;38(10):1009-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1477784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1477-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1346933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1992 Feb 25;20(4):918</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1542586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome. 1992 Feb;35(1):84-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1572530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1992 Oct 25;20(20):5493</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1437577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 1991 Jan;7(1):1-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2003333</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MelampsoraV2/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000206 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000206 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MelampsoraV2
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:8202363
   |texte=   Heteroduplex molecules formed between allelic sequences cause nonparental RAPD bands.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:8202363" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MelampsoraV2 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Tue Nov 24 19:18:52 2020. Site generation: Tue Nov 24 19:22:33 2020