Serveur d'exploration Melampsora (ISTEX)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Spatial variation in disease resistance: from molecules to metapopulations.

Identifieur interne : 000110 ( PubMed/Corpus ); précédent : 000109; suivant : 000111

Spatial variation in disease resistance: from molecules to metapopulations.

Auteurs : Anna-Liisa Laine ; Jeremy J. Burdon ; Peter N. Dodds ; Peter H. Thrall

Source :

RBID : pubmed:21243068

Abstract

Variation in disease resistance is a widespread phenomenon in wild plant-pathogen associations. Here, we review current literature on natural plant-pathogen associations to determine how diversity in disease resistance is distributed at different hierarchical levels - within host individuals, within host populations, among host populations at the metapopulation scale and at larger regional scales.We find diversity in resistance across all spatial scales examined. Furthermore, variability seems to be the best counter-defence of plants against their rapidly evolving pathogens. We find that higher diversity of resistance phenotypes also results in higher levels of resistance at the population level.Overall, we find that wild plant populations are more likely to be susceptible than resistant to their pathogens. However, the degree of resistance differs strikingly depending on the origin of the pathogen strains used in experimental inoculation studies. Plant populations are on average 16% more resistant to allopatric pathogen strains than they are to strains that occur within the same population (48 % vs. 32 % respectively).Pathogen dispersal mode affects levels of resistance in natural plant populations with lowest levels detected for hosts of airborne pathogens and highest for waterborne pathogens.Detailed analysis of two model systems, Linum marginale infected by Melampsora lini, and Plantago lanceolata infected by Podosphaera plantaginis, show that the amount of variation in disease resistance declines towards higher spatial scales as we move from individual hosts to metapopulations, but evaluation of multiple spatial scales is needed to fully capture the structure of disease resistance.Synthesis: Variation in disease resistance is ubiquitous in wild plant-pathogen associations. While the debate over whether the resistance structure of plant populations is determined by pathogen-imposed selection versus non-adaptive processes remains unresolved, we do report examples of pathogen-imposed selection on host resistance. Here we highlight the importance of measuring resistance across multiple spatial scales, and of using sympatric strains when looking for signs of coevolution in wild plant-pathogen interactions.

DOI: 10.1111/j.1365-2745.2010.01738.x
PubMed: 21243068
PubMed Central: PMC3020101

Links to Exploration step

pubmed:21243068

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Spatial variation in disease resistance: from molecules to metapopulations.</title>
<author>
<name sortKey="Laine, Anna Liisa" sort="Laine, Anna Liisa" uniqKey="Laine A" first="Anna-Liisa" last="Laine">Anna-Liisa Laine</name>
<affiliation>
<nlm:affiliation>CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Burdon, Jeremy J" sort="Burdon, Jeremy J" uniqKey="Burdon J" first="Jeremy J" last="Burdon">Jeremy J. Burdon</name>
</author>
<author>
<name sortKey="Dodds, Peter N" sort="Dodds, Peter N" uniqKey="Dodds P" first="Peter N" last="Dodds">Peter N. Dodds</name>
</author>
<author>
<name sortKey="Thrall, Peter H" sort="Thrall, Peter H" uniqKey="Thrall P" first="Peter H" last="Thrall">Peter H. Thrall</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21243068</idno>
<idno type="pmid">21243068</idno>
<idno type="doi">10.1111/j.1365-2745.2010.01738.x</idno>
<idno type="pmc">PMC3020101</idno>
<idno type="wicri:Area/PubMed/Corpus">000110</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000110</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Spatial variation in disease resistance: from molecules to metapopulations.</title>
<author>
<name sortKey="Laine, Anna Liisa" sort="Laine, Anna Liisa" uniqKey="Laine A" first="Anna-Liisa" last="Laine">Anna-Liisa Laine</name>
<affiliation>
<nlm:affiliation>CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Burdon, Jeremy J" sort="Burdon, Jeremy J" uniqKey="Burdon J" first="Jeremy J" last="Burdon">Jeremy J. Burdon</name>
</author>
<author>
<name sortKey="Dodds, Peter N" sort="Dodds, Peter N" uniqKey="Dodds P" first="Peter N" last="Dodds">Peter N. Dodds</name>
</author>
<author>
<name sortKey="Thrall, Peter H" sort="Thrall, Peter H" uniqKey="Thrall P" first="Peter H" last="Thrall">Peter H. Thrall</name>
</author>
</analytic>
<series>
<title level="j">The Journal of ecology</title>
<idno type="ISSN">0022-0477</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Variation in disease resistance is a widespread phenomenon in wild plant-pathogen associations. Here, we review current literature on natural plant-pathogen associations to determine how diversity in disease resistance is distributed at different hierarchical levels - within host individuals, within host populations, among host populations at the metapopulation scale and at larger regional scales.We find diversity in resistance across all spatial scales examined. Furthermore, variability seems to be the best counter-defence of plants against their rapidly evolving pathogens. We find that higher diversity of resistance phenotypes also results in higher levels of resistance at the population level.Overall, we find that wild plant populations are more likely to be susceptible than resistant to their pathogens. However, the degree of resistance differs strikingly depending on the origin of the pathogen strains used in experimental inoculation studies. Plant populations are on average 16% more resistant to allopatric pathogen strains than they are to strains that occur within the same population (48 % vs. 32 % respectively).Pathogen dispersal mode affects levels of resistance in natural plant populations with lowest levels detected for hosts of airborne pathogens and highest for waterborne pathogens.Detailed analysis of two model systems, Linum marginale infected by Melampsora lini, and Plantago lanceolata infected by Podosphaera plantaginis, show that the amount of variation in disease resistance declines towards higher spatial scales as we move from individual hosts to metapopulations, but evaluation of multiple spatial scales is needed to fully capture the structure of disease resistance.Synthesis: Variation in disease resistance is ubiquitous in wild plant-pathogen associations. While the debate over whether the resistance structure of plant populations is determined by pathogen-imposed selection versus non-adaptive processes remains unresolved, we do report examples of pathogen-imposed selection on host resistance. Here we highlight the importance of measuring resistance across multiple spatial scales, and of using sympatric strains when looking for signs of coevolution in wild plant-pathogen interactions.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">21243068</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>29</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0022-0477</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>99</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2011</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>The Journal of ecology</Title>
<ISOAbbreviation>J Ecol</ISOAbbreviation>
</Journal>
<ArticleTitle>Spatial variation in disease resistance: from molecules to metapopulations.</ArticleTitle>
<Pagination>
<MedlinePgn>96-112</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Variation in disease resistance is a widespread phenomenon in wild plant-pathogen associations. Here, we review current literature on natural plant-pathogen associations to determine how diversity in disease resistance is distributed at different hierarchical levels - within host individuals, within host populations, among host populations at the metapopulation scale and at larger regional scales.We find diversity in resistance across all spatial scales examined. Furthermore, variability seems to be the best counter-defence of plants against their rapidly evolving pathogens. We find that higher diversity of resistance phenotypes also results in higher levels of resistance at the population level.Overall, we find that wild plant populations are more likely to be susceptible than resistant to their pathogens. However, the degree of resistance differs strikingly depending on the origin of the pathogen strains used in experimental inoculation studies. Plant populations are on average 16% more resistant to allopatric pathogen strains than they are to strains that occur within the same population (48 % vs. 32 % respectively).Pathogen dispersal mode affects levels of resistance in natural plant populations with lowest levels detected for hosts of airborne pathogens and highest for waterborne pathogens.Detailed analysis of two model systems, Linum marginale infected by Melampsora lini, and Plantago lanceolata infected by Podosphaera plantaginis, show that the amount of variation in disease resistance declines towards higher spatial scales as we move from individual hosts to metapopulations, but evaluation of multiple spatial scales is needed to fully capture the structure of disease resistance.Synthesis: Variation in disease resistance is ubiquitous in wild plant-pathogen associations. While the debate over whether the resistance structure of plant populations is determined by pathogen-imposed selection versus non-adaptive processes remains unresolved, we do report examples of pathogen-imposed selection on host resistance. Here we highlight the importance of measuring resistance across multiple spatial scales, and of using sympatric strains when looking for signs of coevolution in wild plant-pathogen interactions.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Laine</LastName>
<ForeName>Anna-Liisa</ForeName>
<Initials>AL</Initials>
<AffiliationInfo>
<Affiliation>CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Burdon</LastName>
<ForeName>Jeremy J</ForeName>
<Initials>JJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dodds</LastName>
<ForeName>Peter N</ForeName>
<Initials>PN</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Thrall</LastName>
<ForeName>Peter H</ForeName>
<Initials>PH</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM074265-01A2</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Ecol</MedlineTA>
<NlmUniqueID>0050202</NlmUniqueID>
<ISSNLinking>0022-0477</ISSNLinking>
</MedlineJournalInfo>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>1</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>1</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>1</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21243068</ArticleId>
<ArticleId IdType="doi">10.1111/j.1365-2745.2010.01738.x</ArticleId>
<ArticleId IdType="pmc">PMC3020101</ArticleId>
<ArticleId IdType="mid">NIHMS233762</ArticleId>
</ArticleIdList>
<pmc-dir>nihms</pmc-dir>
<ReferenceList>
<Reference>
<Citation>Am Nat. 2000 Aug;156(2):156-174</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10856199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Aug 17;406(6797):718-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10963595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2000 Aug;54(4):1102-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11005280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Jan 5;291(5501):118-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11141561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Jun 22;292(5525):2281-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11423651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2001 Jul;158(3):1301-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11454776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Jun 14;411(6839):826-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11459065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Acquir Immune Defic Syndr. 2001 Jul 1;27(3):277-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11464148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2002 Aug;5(4):339-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12179968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2002 Jul;56(7):1340-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12206236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2002 Dec;32(4):569-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12457190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2003 Jan;12(1):263-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12492894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Mar 14;299(5613):1680-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12637729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Mar 14;299(5613):1735-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12637745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 May 1;423(6935):74-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12721627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2003;4(9):227</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12952527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2003 Oct;91(4):345-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14512948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2003 Dec;19(12):667-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14642742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1997 Jun;48:575-607</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 1996;34:29-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2005 Jan;59(1):70-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15792228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Evol Biol. 2005 Jul;18(4):930-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16033565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2006;44:19-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16343053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2006 Feb 7;273(1584):267-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16543168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2006 Apr 22;273(1589):1031-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16627290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;171(1):137-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16771989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2006 Jun 22;273(1593):1501-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16777744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2006 Aug;60(8):1562-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17017057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 16;444(7117):323-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Nov;18(11):2919-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17114357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2007 Jan;61(1):27-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17300425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2007 Feb;61(2):368-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17348946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2007 May;8(5):382-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17404584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2007 Aug;61(8):1812-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17683425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Evol Biol. 2007 Sep;20(5):1665-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17714283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Evol Biol. 2007 Nov;20(6):2371-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17956398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2008 Apr;11(4):327-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18248450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2008 Apr;17(7):1636-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18266620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2008 Apr;11(2):135-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18329329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2008 May;171(5):658-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18419564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Evol Biol. 2008 Sep;21(5):1418-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18557795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2008 Dec;23(12):678-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18947899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2008 Nov;17(22):4912-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19140981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 May 8;324(5928):755-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19423818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2009 Jul;10(4):449-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19523099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2009 Sep;174(3):308-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19627233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2009 Nov;26(11):2499-513</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19633228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Evol Biol. 2010 Jan;23(1):87-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19895655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2010 Apr;283(4):305-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20140455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1996 Jan;105(2):205-213</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28307084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1997 Dec;113(1):133-139</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28307288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1988 May;75(4):535-538</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28312428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1985 Jul;39(4):713-723</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28561354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1991 Feb;45(1):205-217</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28564067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1991 Nov;45(7):1618-1627</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28564135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1989 Jul;43(4):835-847</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28564198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1999 Apr;53(2):395-407</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28565431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1999 Aug;53(4):1318-1324</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28565518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1999 Aug;53(4):1259-1267</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28565537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1999 Jun;53(3):704-716</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28565630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1994 Oct;48(5):1423-1437</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28568406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1994 Oct;48(5):1564-1575</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28568407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1997 Oct;51(5):1416-1426</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28568641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1988 Nov;42(6):1166-1171</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28581071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Popul Biol. 1970 Aug;1(2):140-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5527629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1997 Oct;12(4):757-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9375391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Immunol. 1998;16:593-617</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9597143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 1998 Nov;8(11):1113-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9847076</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MelampsoraV2/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000110 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000110 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MelampsoraV2
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:21243068
   |texte=   Spatial variation in disease resistance: from molecules to metapopulations.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:21243068" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MelampsoraV2 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Tue Nov 24 19:18:52 2020. Site generation: Tue Nov 24 19:22:33 2020